
This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie MarlenyNatalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin HagemeisterMarvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 783945 749906

“

“

Published 2020 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN: 978-3-945749-90-6

Cover and interior illustrations: Rob Draper
Copyediting: Owen Gregory
Cover and interior layout: Ari Stiles
Ebook production: Cosima Mielke
Typefaces: Elena by Nicole Dotin, Mija by

Miguel Hernández and Andalé Mono by Steve Matteson

TypeScript in 50 Lessons was written by Stefan Baumgartner and
reviewed by Shawn Wang.

This book is printed with material from
FSC® certified forests, recycled
material and other controlled sources.

Please send errors to: errata@smashingmagazine.com

To Doris, Clemens, and Aaron

 Table of Contents

 Introduction xi

1 TypeScript for Smashing People 19

2 Working with Types 67

3 Typing Functions 131

4 Union and Intersection Types 201

5 Generics 267

6 Conditional Types 329

7 Thinking in Types 383

Acknowledgements

This book would not exist if it wasn’t for Markus Seyfferth.
Not only did he encourage me to pursue my book idea, but
our regular meetings helped tremendously to shape the
outline and contents of the final piece.

My ScriptConf buddies – Sebastian Gierlinger and Dominik
Angerer – are partners in crime, always open to validate
ideas, and invaluable friends. Their feedback and motivation
helped a great deal to finalize this book.

I want to thank Rob Draper, who not only created the
marvellous artwork you see in this book, but also helped
a lot to find a theme and put a very technical topic in a
very human perspective.

The wonderful crew at Smashing. It has been such a joy
to work with you on this piece. Rachel Andrew is the
best editor one can wish for. Owen Gregory makes me
sound wonderfully English. Ari Stiles with her captivating
enthusiasm creates art out of words. Cosima Mielke, who
applied every ebook trick available to make the final result
extraordinary. And Vitaly Friedman is constantly helping
me to make my ideas a reality.

To say Shawn Wang did the technical review would not do
his influence justice. He put a lot of TypeScript culture into
the book that made it complete.

My colleagues at Dynatrace, especially Fabian Friedl,
Thomas Heller and Ernst Ambichl. Working with them had
direct influence on every page written.

The TypeScript and TSConf:EU community. Daniel
Rosenwasser, Anders Hejlsberg, Marius Schulz, Natalie
Marleny, Bert Belder, Fred Schott, Lili Kastilio, Nathalia Rus,
Vanessa Böhner, Marvin Hagemeister, Gary Bernhardt,
Mirjam Bäuerlein, Georg Kothmeier, Alex Rosemann, and
Peter Kröner all had direct or indirect influence on the book.

When you think of the TypeScript community, you inevi-
tably think of Orta Therox, whose tireless work in and out
of hours continuously brings the community together. I’m
incredibly honored that he agreed to open this book.

Last, but not least, I want to thank my wonderful family –
Doris, Clemens, and Aaron – for their support, their under-
standing, and their shared enthusiasm. And I’m sorry for all
the times my mind wandered off into type systems, where it
should’ve been with the LEGO blocks.

Foreword

There are so many ways to learn a programming language,
and even more ways to go from “I can read this” to “I truly
understand what is going on here.”

The official TypeScript documentation has to walk a fine
line between being authoritative and trying to cater to a
large amount of learners with diverse backgrounds. As more
people adopt TypeScript, we need more ways to help them
understand the tools the language provides.

When I interviewed for the TypeScript team, I pitched a
vision of language documentation that takes into account
the rich community of people writing articles, who help the
TypeScript team’s writing stay focused.

Stefan Baumgartner is one of those incredible community
members.

Stefan runs TypeScript meetups and conferences, and his
blog is a constant source of delightful, insightful articles
on the language.

His articles have a personal tone, which reminds me of
DMing a colleague a question and they respond with: “Give
me a second, I’ll come by and explain this properly.” This

book takes that down-to-earth approach and hits
all the foundational points in the language. It’s a great
fit for Smashing.

TypeScript is an evolving language, and the new features
can sound so obtuse unless you have a firm understanding
of the foundations and the design constraints on the lan-
guage. That’s why I was so happy to see the interludes
in this book which help fill in some of the gaps of why in-
stead of just showing you the how of TypeScript.

So, I’ll raise an emoji to a great resource for people
growing their knowledge and taking those first few
steps into that uncomfortable but gratifying space of
“Today, I learned.”

—Orta Therox

Introduction

Do you have some time to talk about TypeScript? If you have
been following discussion in the tech community during
the last couple of years, there has been no way of avoiding
countless people gushing over their newest toy: TypeScript,
a programming language atop of JavaScript, which suppos-
edly makes everything a lot better.

The flood of information on TypeScript, and the amount of
opinions on TypeScript, can be overwhelming. But there is
no denying that its significance grows stronger every day.
In the 2020 StackOverflow developer survey,1 67% stated
that TypeScript was their most loved language, coming in
at second place. While with npm, Inc., Laurie Voss found in
the 2019 npm survey2 that around 63% of npm users used
some sort of TypeScript, with 52% primarily writing Type-
Script. Those are big numbers!

The same person, a different survey, a different commun-
ity: in the “State of the Jamstack Survey 2020,”3 Laurie
found that around 10% use TypeScript primarily. About
this survey, Laurie said:

1 https://smashed.by/2020survey
2 https://smashed.by/npmsurvey
3 https://smashed.by/jamstacksurvey

xi

I keep running into this phenomenon that people
who write TypeScript think of themselves as
TypeScript devs, not JavaScript developers Which
is strange because TypeScript itself describes itself
as being… just JavaScript!

Laurie has a point here. There seems to be an artificial
split between people who consider themselves JavaScript
developers, and people who think they don’t write
JavaScript anymore. I myself kept ditching TypeScript4
for years, seeing it only as a way to make something
supposed to be easy – JavaScript – a lot more difficult. To
me, TypeScript was JavaScript for Java developers.

Oh, how wrong I was! TypeScript can be much more than
that. A subtle tool, a simple layer atop the programming
language that drives the web. If you ever find yourself:

• writing JavaScript with libraries and frameworks you
barely know

• writing JavaScript with others

• writing JavaScript that deals with back-end data

• writing JavaScript that your future self has to continue
working on

4 https://smashed.by/whytypescript

xii TypeScript in 50 Lessons

then TypeScript will do right by you. This book will give
you a gentle, human introduction to one of most beloved
programming languages, and you will end up a master
of type systems.

Who This Book Is For

This book is for developers who know enough JavaScript
to be dangerous. They spend an increasing amount of time
programming and want to be more productive in doing so.
With TypeScript, they hope to get more information out of
their JavaScript code – for themselves and their colleagues.

This book is also for developers who dipped their toes
into TypeScript and now want to get their feet wet. They
want to learn about type systems and how they can be
used to define complex JavaScript scenarios. This knowl-
edge will ultimately become language-independent, pre-
paring them for different programming languages
that have elaborate type systems.

Scope of This Book

Programming books have a tendency to become outdated
very quickly. The moment you hold the printed version in

xiiiIntroduction

your hands, the world has moved on and parts are out of
date, or important lessons are left out. When I set out to
write this book, my most important goal was that it had
to be timeless. TypeScript gets at least two major releases
a year, so there are new features and changes on certain
aspects of the programming language.

That’s why we focus on the long-lasting aspects of the type
system. The main way to program will be JavaScript; Type-
Script will work as an additional type layer describing the
behavior of our code. This is also aligned with the way the
TypeScript team design their upcoming work. After read-
ing this book, you will immediately understand what new
features are about.

TypeScript in 50 Lessons

This book is TypeScript for humans, so I want to give you
the most human introduction to the programming lan-
guage. This is why we split up the book into seven chapters
with seven lessons each, with a final lesson at the end.

The lessons are practical, based on real-world problems that
I and many friends and peers have encountered over the
last few years. Each lesson takes no longer than ten min-

xiv TypeScript in 50 Lessons

utes to read and digest, making it the perfect companion
for commuting, or a little light reading before bed. Smaller,
casual interludes between chapters provide context or point
to TypeScript features outside our main focus.

On the book’s website,5 you will find editable examples for
each lesson for you to play around with.

Chapters build on one another, with each chapter focusing on
a specific part of the language around a concrete example.

Here’s a chapter rundown.

TypeScript for Smashing People
We go on a hunt for red squiggly lines. If a word proces-
sor can highlight our spelling and grammar mistakes,
why shouldn’t a programming editor do the same? In this
opening chapter, we will see that – given the right tools –
we might already be using TypeScript without realizing.
With TypeScript being a gradual type system, we can gently
encourage the programming language to give us more in-
sights into our code. We will also write our first types.

Working with Types
We learn about some major features of TypeScript, like type
annotations, type inference, and control flow. We will define

5 https://typescript-book.com

xvIntroduction

primitive and complex types, and learn about the difference
between types and interfaces. For every variable or constant
we can create, we find a way to provide a type.

Functions
Functions are an essential feature in JavaScript, and we can
see that once we want to type function signatures.
We learn about function heads and bodies, structural typing
for functions, and how we can define different behavior for
the same function.

Union and Intersection Types
TypeScript’s type system can be seen as an endless space
of values, and types are nothing but discrete sets of values
inside this space. This allows for algebraic operations like
union and intersections, making it a lot easier for us to de-
fine concrete types for values. We learn about type widen-
ing and narrowing, top and bottom types, and how we can
influence control flow.

Generics
Generics are a way to prepare types for the unknown.
Whenever we know a certain behavior of a type but can’t
exactly say which type it affects, a generic helps us to model
this behavior. We learn about generic constraints, binding
generics, mapped types, and type modifiers.

xvi TypeScript in 50 Lessons

Conditional Types
Conditional types are arguably the most unique feature to
TypeScript’s type system. They allow us to introduce a level
of meta-programming unseen in programming languages,
where we can create if/else clauses to determine a type based
on the input type. This allows for a powerful set of tools we
can use to define model and behavior once, and make sure
we don’t end up in type maintenance hell.

Thinking in Types
The final chapter deals with situations you might encounter
in your everyday programming life. We use these situations
to get into a thinking-in-types mindset, where we take care
about a robust and well-defined set of types before starting
implementation. This helps us validate that what we code is
what we expect.

xviiIntroduction

Lesson 1: Red Squiggly Lines 20

Lesson 2: Hunting Bugs 27

Lesson 3: Types . 35

Lesson 4: Adding Types with JSDoc 40

Lesson 5: Type Declaration Files 47

Lesson 6: Ambient Declaration Files 52

Lesson 7: Tooling . 58

TypeScript for Smashing People

In this chapter, we want to debunk myths. TypeScript
can be so many things, and many people have different
views on this programming language that has become

so popular in recent years. What is TypeScript actually
about? Let's see what TypeScript has in store for us.

Lesson 1: Red Squiggly Lines
Take a look at this piece of code.

const storage = {
 max: undefined,
 items: []
}

Object.defineProperty(storage, 'max', { readonly:
true, val: 5000 })

let currentStorage = 'undefined'

function storageUsed() {
 if(currentStorage) {
 return currentStorage
 }
 currentStorage = 0
 for(const i = 0; i < storage.length(); i++) {
 currentStorage += storage.items[i].weigth
 }

 return currentStorage
}

function add(item) {
 if(storage.max - item.weight >= storageUsed) {
 storage.items.add(item)
 currentStorage += iten.weight
 }
}

Just about 25 lines of JavaScript and a lot is going on in
there! If we investigate this snippet, we might deduce that
it’s about some storage, maybe of a ship, that can hold about
5,000 tons of items. Two functions help us by adding items
and checking if there is still room left.

Looks pretty easy, doesn’t it? Well, there’s a catch: a sneaky
little error hidden somewhere within those 25 lines of code.
Can you spot it?

All right, that was a little lie. There’s not just one error,
there are lots. There are so many mistakes and errors that
not a single line is without flaws. This piece is utterly
broken. And it gets worse. We don’t get any feedback from
the browser (or Node.js for that matter) telling us that
something is off. This snippet neither breaks nor fills the

22 TypeScript in 50 Lessons

browser’s console with error messages. It stays quiet when
we call the add method:

add({ weight: 3000 })

No visible errors. It’s just not working.

Welcome to JavaScript! Things like this are known to drive
developers mad. People doubting their career choices,
spending hours finding out where their finger slipped to
the neighboring key, making a usually solid piece of work
erroneous. Such errors also give JavaScript a bad reputation,
which is sad for a programming language that enables so
many of us to create wonderful things.

The longer you stare at the 25 lines of JavaScript the more
problems you will find. Things that are outright broken, but
also things that seem only slightly off and invite you to test
around. The problem is, just by looking at the text, it’s hard
to keep track of everything that might be out of the ordinary.

Wouldn’t it be nice if we could get some visual feedback help-
ing us to identify problems immediately, instead of having to
spend hours looking for them? Think of a wrod – excuse me
– word processor showing you typos with red squiggly lines.

23Chapter 1 TypeScript for Smashing People

Enter TypeScript

This is the purpose of TypeScript: pointing out potential errors
before your code hits the production environment. First and
foremost, TypeScript provides code analysis for JavaScript.

Take a modern code editor. Maybe you use Visual Studio
Code (VS Code).6 When you open a JavaScript file, VS Code
might not look too different from other editors. But under-
neath, TypeScript is already active. Running, inspecting,
analyzing. Need proof? Create a new JavaScript file and
enter the following line:

var myName = 'Stefan'

You are invited to use your name, of course. Now enter “my”,
hold the Ctrl key on your keyboard and press Space. You
should get a view like this:

Editors pick up names and give you autocompletion

6 https://code.visualstudio.com/

24 TypeScript in 50 Lessons

VS Code tries to autocomplete your writing with a variable
name it already found: myName. To get this variable name,
TypeScript ran through your file and tried to collect every
name it could find, so you can reuse them when writing.

Even though VS Code gives us TypeScript
out of the box, you can have the same
features in your editor of choice. Look for
plug-ins called “TypeScript language
server.” The TypeScript language server
implements a protocol that can fetch code
from the editor and returns analysis
feedback. This gives you red squiggly lines
in almost every editor available.

So TypeScript is active, but it’s also a little shy. To unleash
TypeScript’s full power, we have to explicitly invite Type-
Script to tell us the results of the analysis. By adding
//@ts-check as the very first line of your file, TypeScript
will start to add red squiggly lines to code pieces that just
don’t make sense:

//@ts-check
const storage = {
 max: undefined,

25Chapter 1 TypeScript for Smashing People

 items: []
}

Object.defineProperty(storage, 'max', { readonly: true,
val: 5000 })

let currentStorage = 'undefined'

function storageUsed() {
 if(currentStorage) {
 return currentStorage
 }
 currentStorage = 0
 for(const i = 0; i < storage.length(); i++) {
 currentStorage += storage.items[i].weigth
 }
 return currentStorage
}

function add(item) {
 if(storage.max - item.weight >= storageUsed) {
 storage.items.add(item)
 currentStorage += iten.weight
 }
}

Oh, wow! Seems like there are a couple of problems! Some
of them seem obvious, others not. Let’s investigate them
one by one.

26 TypeScript in 50 Lessons

Lesson 2: Hunting Bugs

With the addition of //@ts-check, TypeScript became active
in our JavaScript file and showed the first list of problems.
Usually, code editors not only give visual feedback in the form
of red squiggly lines but also let you know what the problem
is. When you hover over one of the problematic pieces, VS
Code gives you an explanation in a pop-up. But you might no-
tice the problems yourself once they’re highlighted. The more
you work with TypeScript, the more intuitive it becomes.

readonly Is Not Assignable

At line 7 we want to define a new property called max, set
the value to 5,000 and make sure we can’t overwrite the
value. TypeScript complains that the property readonly is
not assignable to a PropertyDescriptor. Fancy words!

What they mean is that we’ve mixed up words. Property
descriptors don’t know of a property called readonly; it’s
called writable. Instead of a readonly value of true, we
need a writable value of false. When we correct our
mistake, TypeScript will also tell us that val does not exist
– it’s value. The corrected line looks like:

27Chapter 1 TypeScript for Smashing People

Object.defineProperty(storage, 'max', { writable:
false, value: 5000 })

This is the first feature of TypeScript: making sure you use
the correct names for the things you want to use. No more
typos, no more wrong spellings or mixed up terms. We call
this a type check: making sure you deliver what’s expected.

What’s the difference between readonly: true and
writable: false anyway? One is understood by JavaScript,
the other isn’t. But how are we supposed to know which
properties to set? Since TypeScript knows which properties to
expect and gives you an error when you go wrong, we can use
the same information to get editor assistance. Press Ctrl +
Space right inside the object and you again get autocomplete,
but within the context of your current line:

With TypeScript active, we immediately get details of what information we
expect at this particular point in our code

28 TypeScript in 50 Lessons

Not only that, but we can also make sure we don’t add
something other than true or false when adding a
value to writable.

Type Inference

On to the next red squiggly line. When we hover over the
red lines under currentStorage, we see that “Type 0 is not
assignable to type 'string.'” In JavaScript, you can assign
different values to variables, including completely unrelated
values and values of different types. JavaScript doesn’t care
if your let foo is “Garfield” (a string of characters), 1337 (a
number), or { heavy: true }.

This is also the moment when most errors arise. Once you
assign a value to a variable, you most likely want it to keep a
specific type. A couple of lines earlier, we created our variable
currentStorage and set it to 'undefined'.

However, we made a little error there. We assigned the string
value “undefined” to it, not the programmatic undefined.
This undefined tells JavaScript that there is neither a type
nor a value yet.

// this should be currentStorage = undefined
let currentStorage = 'undefined'

29Chapter 1 TypeScript for Smashing People

function storageUsed() {
 if(currentStorage) {
 return currentStorage
 }
 currentStorage = 0
 for(const i = 0; i < storage.length(); i++) {
 currentStorage += storage.items[i].weigth
 }
 return currentStorage
}

This causes a cascade of errors! For example, if(current
Storage) evaluates to true before we could even set the
actual current storage amount. If we set currentStorage
= undefined, this condition evaluates to false. This in turn
leads to the code where we sum up the current storage
amount for the very first time (don’t worry, this part has
tons of errors as well).

TypeScript warns us that we’re mixing types. When initial-
izing currentStorage, we assign a string value. Later on,
we want it to be a number. This is usually behavior we don’t
want, so TypeScript throws errors at us.

TypeScript uses a concept called type inference. The
moment we assign a value to a variable, TypeScript tries to
infer the type from the assignment. currentStorage = 0,
for example, tells TypeScript that currentStorage is expect-

30 TypeScript in 50 Lessons

ed to be a number. From that point on, we can only reassign
numbers or do number-based things (mathematical opera-
tions, for instance).

The moment we assign undefined, currentStorage can be
anything until it gets a distinct type. To solve our problem,
we change 'undefined' to undefined:

let currentStorage = undefined

function storageUsed() {
 // Suddenly this evaluates to false with the
first call
 if(currentStorage) {
 return currentStorage
 }

 // From now on, currentStorage is a number
 currentStorage = 0
 ...
 // and storageUsed() returns a number
 return currentStorage
}

Type inference also works within methods. In our example
above, we return currentStorage at the end of storage
Used(). Since we know that currentStorage becomes a
number, storageUsed() also has to return a number. In
const x = storageUsed(), x will be a number.

31Chapter 1 TypeScript for Smashing People

Semantic Checks

On line 16 we have a for loop where we go through all our
storage items and make a sum.

for(const i = 0; i < storage.length(); i++) {
 currentStorage += storage.items[i].weigth
}

Unfortunately, this loop will crash. The reason: we declared
the initialization variable i as a constant. Constants can’t
be reassigned; that’s why this code won’t work. A change to
let solves this problem:

for(let i = 0; i < storage.length(); i++) { // OK!
currentStorage += storage.items[i].weigth
}

This is one of many semantic checks. TypeScript not only
tells us what’s wrong. With the correct editor integration, it
can also suggest quick fixes that solve your problem.

Again, the main purpose of TypeScript is to give you the
best tooling possible. It wants to understand your code
better than you do.

32 TypeScript in 50 Lessons

TypeScript knows of common errors and suggests automatic fixes

The Last Bits

By now you should be familiar with the benefits TypeScript
gives us: it analyzes code, tells us what’s wrong, and returns
suggestions on how we can prevent or fix potential errors.

 It does so by comparing the shape of objects and variables
from what it can infer to what’s supposed to be. The last few
bits fall into the same categories.

On line 23 TypeScript tells us that “Operator ‘>=’ cannot be
applied to types ‘number’ and ‘() => number’”. Not only is the
condition really hard to read, but we also compare numbers
to a function! We forgot to call storageUsed, so let’s fix that:

-if(storage.max - item.weight >= storageUsed)
+if(storage.max - item.weight >= storageUsed())

33Chapter 1 TypeScript for Smashing People

The next line tells us that add is not a valid method on
arrays; it should be push:

-storage.items.add(item)
+storage.items.push(item)

Last, but not least, we have a nasty typo. Where does this
iten come from, when it should be an item?

-currentStorage += iten.weight
+currentStorage += item.weight

With the simple addition of a comment line at the begin-
ning of our JavaScript file, we were able to figure out a ton
of potential problems and pitfalls that would have made
our program crash.

TypeScript does this by comparing the eponymous types.
But what are types? And can we use types to figure out even
more problems? We can, we can!

34 TypeScript in 50 Lessons

Lesson 3: Types

We already found a couple of errors in our last lesson, but
we are not done yet. There are many more problems to be
found! To get to the bottom of the barrel, we have to be a
little bit more deliberate about our types. Wait a second.
What even are types?

In his book, Programming with Types,7 Vlad Riscutia defines
types as follows:

A type is a classification of data that defines
the operations that can be done on that data,
the meaning of the data, and the set of
allowed values Typing is checked by the
compiler and/or run time to ensure the
integrity of the data, enforce access
restrictions, and interpret the data as
meant by the developer

With types, we know that "Hello World" is a string of char-
acters, 1234 is of type number, and true is Boolean. Without
types like boolean, string, or number, those values would
just be zeros and ones in some computer’s memory, and we
wouldn’t know what to do with them.

7 https://smashed.by/programmingwithtypes

35Chapter 1 TypeScript for Smashing People

A type not only defines how a value should be interpreted, it
also suddenly affords us operations! We can multiply 1,234 by
10, or make “Hello World” all uppercase with .toUpperCase().

Types are fundamental to programming. JavaScript has
types! And don’t let anybody else tell you otherwise!
In JavaScript, you have primitive types like number,
string, and boolean. Yes, there are other primitive types,
and we will come to them in time.

There are also composite data types like:

• objects: properties and values of different primitive
and composite types

• arrays: lists of values which can take any type

• functions: methods you call with parameters of certain
types, and which return values of certain types

And there are symbols, but they are a whole different story.

Weakly Typed

JavaScript, however, is weakly typed. This means that even
though you create a variable or property and assign a value
of a certain type, you can switch types on the run:

36 TypeScript in 50 Lessons

let val = 1234; // OK!
val = 'Onetwothreefour'; // Reassignment. Still OK!

You can also combine values of different types without a hitch:

let val = { a : 3 } + 5
// [object Object]5! What does that even mean?

The results don’t necessarily have to make sense. And even
though operations like that are possible, they’re widely con-
sidered errors – errors that aren’t caught.

Strongly Typed

TypeScript is strongly typed. This means that once you assign
a value of a certain type, TypeScript wants you to stick with it.

let val = 1234; // OK! val is a number
// Wait, what? Now it's a string? This can't be!
val = 'Onetwothreefour';

This also means that you can’t use operators on values of
different types, as they usually don’t make sense:

37Chapter 1 TypeScript for Smashing People

// You want to add a number to an object? Why??
let val = { a : 3 } + 5

And with that, you get all the red squiggly lines. If you
are used to reusing variables or adding numbers and
strings on the fly, you might feel a little bit restricted
when using TypeScript.

You trade this flexibility for code that is a lot more sound,
correct, and void of potential pitfalls.

Shapes

Primitive types are rather simple to define. They can have a
very defined range of values. The type boolean, for example,
is the simplest: it can be true, false, undefined, or null.
You can count the number of possible values with your
fingers. Numbers and strings allow for far more values,
but only what memory and the current JavaScript runtime
allow (check Number.MIN_VALUE and Number.MAX_VALUE to
get a feel of the range number can take).

It gets more complex with composite types. Here, we deal
not only with ranges of values, but also with so-called
shapes. Shapes tell us more about the structural features

38 TypeScript in 50 Lessons

of a type: types and names of properties of an object, types
and names of parameters of a function, types and indexes of
elements in an array.

Take the following person object, for example:

const person = {
 firstName: 'Stefan',
 lastName: 'Baumgartner',
 age: 38
}

person is of type object, but follows the shape: firstName is
a string; lastName is a string; and age is a number. We can
define this shape as a custom type:

type Person = {
 firstName: string,
 lastName: string,
 age: number
}

With TypeScript being a structural type system, shapes are
incredibly important. As long as variables match a certain
shape (in the way that { writable: false } matches the
shape of PropertyDescriptor in our previous example),

39Chapter 1 TypeScript for Smashing People

TypeScript will be OK with your code. Should you provide
objects with different shapes, you’ll get even more errors.
Let’s check on that in the next lesson.

Lesson 4:
Adding Types with JSDoc
Now that we know what types are, we can start to be a bit
more intentional with the data objects and functions in our
little script. Adding types to an existing JavaScript file can
happen in many ways. One of the easiest is to use a little
tool called JSDoc.

JSDoc8 is a way to annotate our code using comments. We
describe function signatures, object properties, and much
more by using certain conventions:

/**
 * Adding two numbers. This annotation tells
TypeScript
 * which types to expect. Two parameters (params) of
 * type number and a return type of number
 *
 * @param {number} numberOne
 * @param {number} numberTwo
 * @returns {number}
 */

8 https://jsdoc.app/

40 TypeScript in 50 Lessons

function addNumbers(numberOne, numberTwo) {
 return numberOne + numberTwo
}

The JSDoc app usually runs over our annotated source
code and creates HTML-based documentation.
TypeScript uses the same annotations to get more infor-
mation on our intended types.

// TypeScript throws an error here, because the JSDoc
// comments expect two numbers, not a number and
// a string
addNumbers(3, '2')

// TypeScript throws an error here, because addNumbers
// returns a number, and toUpperCase() is not available
// in number
addNumbers(3, 2).toUpperCase()

This is a great way to be very intentional about what types
to expect. And with that intent comes safety when using
functions and when implementing them.

/**
 * @param {number} numberOne
 * @param {number} numberTwo

41Chapter 1 TypeScript for Smashing People

 * @returns {number}
 */
function addNumbers(numberOne, numberTwo) {
 return numberOne.toUpperCase() + ''
 // Wait, what? We are treating numberOne like a
 // string, even though it's a number, and we return
 // it as a string even though we expect a number in
 // return, there's something wrong here!
}

As an added benefit, we get documentation with our types.
Or do we get types with our documentation?

Custom Types

JSDoc works well with primitive types like number, string,
and boolean. But we are also able to define composite types
like objects and arrays with JSDoc.

Objects are a bit tricky. In JavaScript we can declare objects
on the run with two little curly braces: const x = {}. This
empty object has no extra properties at the moment, but this
can change drastically as our program evolves. With x.hey =
'Ho', we suddenly add a new property to x without any trouble.

Those freewheeling objects in JavaScript are flexible but
also very unpredictable. That’s why TypeScript doesn’t

42 TypeScript in 50 Lessons

throw errors when an object property that hasn’t yet been
defined shows up in our regular JavaScript code. It could
have been defined somewhere!

With a JSDoc type annotation, we can declare which object
properties we expect to exist, and make sure that TypeScript
knows what to expect. Suddenly, the object has a defined
type – a contract – and we make sure that we always refer
to this contract.

Let’s add a JSDoc annotation to our storage object. Take a
look at its current shape:

const storage = {
 max: undefined,
 items: []
}

There’s a value called max that can be anything. undefined
is a valid value of any type! And we have an array of items
where we also don’t yet know how our items should look.

Let’s focus on items first. Items can have lots of properties,
but the one we need according to our little script is weight,
and weight should be of type number.

/**
 * @typedef {Object} StorageItem

43Chapter 1 TypeScript for Smashing People

 * @property {number} weight
 */

So within a comment, we define a new type called Storage
Item, which is an object. It has one property called weight,
which is a number. We also create a type for our storage object
in the same fashion.

/**
 * @typedef {Object} ShipStorage
 * @property {number} max
 * @property {StorageItem[]} items
 */

Here, typing is very important as again we are very delib-
erate about what we expect. max is undefined for now, but
it should be a number once we assign real values. And our
array is full of StorageItems, a custom type we defined just
a couple of lines above. Now, with our types defined, let’s
apply them to the storage object:

/** @type ShipStorage */
const storage = {
 max: undefined,
 items: []
}

44 TypeScript in 50 Lessons

and find out where our code explodes!

Boom!

We get some troubles in our storageUsed() function:

function storageUsed() {
 ...
 for(let i = 0; i < storage.length(); i++) {
 currentStorage += storage.items[i].weigth
 }
 ...
}

First, the property .length() does not exist on type Ship
Storage. It’s a property on items that we get because items
is an array. But it’s not a function, it’s a value. Also, weigth is
a typo. TypeScript suggests a correction for us.

A TypeScript error not only shows us what’s wrong, but also suggests what we
meant to do! Finding and fixing typos is something TypeScript is really good at

45Chapter 1 TypeScript for Smashing People

Intention

Just by adding a simple type annotation in a JSDoc com-
ment, TypeScript knows so much more about the semantics
of our program. And our intentions for variables, constants,
and functions become a lot more visible. Types become a
tool we can use throughout our code:

/**
 * @param {StorageItem} item
 */
function add(item) {
 if(storage.max - item.weight >= storageUsed()) {
 storage.items.push(item)
 currentStorage += item.weight
 }
}

Types signal intention, define a contract, and make sure we
use our program code in the way it was supposed to be. And
this comes at almost no cost. A little documentation layer on
top of our regular JavaScript, and we get much more tooling,
information, and knowledge.

JSDoc is very powerful and can carry you a long way. I’ve
written an exhaustive reference of possible type annota-
tions by comments9 on my website.

9 https://smashed.by/jsdocsuperpowers

46 TypeScript in 50 Lessons

Lesson 5: Type Declaration Files

While JSDoc can get you very far, it can be a little unwieldy
at times, especially when you want to define complex, nested
object shapes, or want to reuse types over different files. You
end up with a lot of comments and a lot of subtypes. Most
likely, this will clutter your codebase more than it will help.

To make it easier for us to define custom types, describe global
function interfaces, or share types between different parts of
our JavaScript application, we can use type declaration files.

TypeScript, the Programming Language

This is also our first foray into a programming language
that looks a lot like JavaScript but is in fact TypeScript.
Up until now, we have used the tooling part of TypeScript:
a type-checker, a language server that gives feedback to
code editors. We haven’t written something that couldn’t be
found in JavaScript’s language specification.

What we are going to see now is new. Similar to JavaScript
but different enough. And it can’t be executed by a browser
or Node.js runtime. TypeScript, the programming language.
TypeScript calls itself a superset of JavaScript. That means
TypeScript is a programming language that includes all of

47Chapter 1 TypeScript for Smashing People

JavaScript, and also more language constructs for additional
features. One of them is defining custom object types.

Custom Type Declarations

We had a glimpse of custom object types in lesson 4. Let’s
see how we can define our ShipStorage type with this new
programming language:

type StorageItem = {
 weight: number
}

type ShipStorage = {
 max: number,
 items: StorageItem[]
}

As you can see, this new declaration holds the same infor-
mation as our JSDoc comments in lesson 4. But the way we
define types looks entirely different – a little bit like how we
define an object in JavaScript. If you compare storage from
our JavaScript program, you can see the similarities:

type ShipStorage = {
 max: number,

48 TypeScript in 50 Lessons

 items: StorageItem[]
}

const storage = {
 max: 6000,
 items: []
}

With the type declaration, we can be very explicit about the
shape of the objects we want to create. And if you compare
the type and the actual object side by side, you see why we
call it shape. As much as a baseball has the shape of a sphere,
the storage object has the shape of a ShipStorage type.

We also say the type has a certain structure.

.d.ts Files

To make type declarations like this work, we have to put
them into a TypeScript file. TypeScript supports type
declaration files that end with d ts Here, you can add all
your custom types, but no extra program code.

We take the ShipStorage and StorageItem types from
above and put it into a types d ts file that’s somewhere next
to your main JavaScript file.

49Chapter 1 TypeScript for Smashing People

Now we have our types in one location. They are, however,
not yet available to our other files. To make our types avail-
able, we have to export them:

export type StorageItem = {
 weight: number
}

export type ShipStorage = {
 max: number,
 items: StorageItem[]
}

We get rid of all our comment-based type declarations in our
main JavaScript files. Instead, we point to the exported types.

Right after your @ts-check comment, add the following
two lines:

/** @typedef { import('./types.d').ShipStorage }
ShipStorage */
/** @typedef { import('./types.d').StorageItem }
StorageItem */

The syntax is very similar to our previous type definition.
But instead of telling TypeScript – or JSDoc – that we’re
defining an object, we point directly to the object we already
defined somewhere else.

50 TypeScript in 50 Lessons

We have just written our first custom types in TypeScript!

Please note that our JavaScript code hasn’t changed at all;
we still write regular JavaScript for the actual core of our
program. TypeScript’s type definitions simply exist on the
side, making your life easier. This is one of the fundamental
principles of TypeScript: making it as easy as possible to add
types to your programming code.

So far you haven’t needed any tools, just an editor that knows
how to handle TypeScript. This leads to a gradual and unob-
trusive workflow that allows you to add TypeScript without
committing too much on tools and build processes.

1. With //@ts-check we activate TypeScript in the file
we are currently editing.

2. We use JSDoc comment type annotations for all our
constants, objects, and functions. Functions, especially,
benefit a lot from the extra information.

3. We create custom type definitions in type
declaration files, and load them as needed in our
JSDoc type annotations.

This way of developing TypeScript is not uncommon. It’s
a great way to gradually migrate to TypeScript, yet also
enough to get most of the benefits of TypeScript without
alienating contributors by introducing a new programming

51Chapter 1 TypeScript for Smashing People

language. One popular framework that uses this approach is
Preact.10 Preact’s entire codebase builds on added types!

Lesson 6:
Ambient Declaration Files
Let’s adjust our addItem function with a tiny little detail:
during development, we want to log the current amount in
our storage to the console. Debugging becomes easier, as
we get constant feedback on how storage changes.

To make sure we only log during development, we
create a global isDevelopment flag, which can take a
value of the type boolean. If this value is set to true, we
log; otherwise, we don’t.

During development we include our JavaScript in a specially
prepared HTML file that sets this particular flag to true:

<script>
const isDevelopment = true
</script>

In our production HTML we omit this piece, or set
isDevelopment to false:

10 https://preactjs.com/

52 TypeScript in 50 Lessons

<script>
const isDevelopment = false
</script>

We now have a globally defined constant we can easily
access from anywhere in our script. Depending on the
environment in which we include our JavaScript files, we
get a different output. Our adjusted addItem function looks
something like this:

/**
 * @param {StorageItem} item
 */
function add(item) {
 if(storage.max - item.weight >= storageUsed()) {
 storage.items.push(item)
 currentStorage += item.weight
 }
 if(isDevelopment) {
 const itemCount = storage.items.length
 console.log(`${itemCount} items`)
 console.log(`${currentStorage} kg total`)
 }
}

This is a very common pattern. And if you write regular
JavaScript, you probably have relied on some global
constant or variable.

53Chapter 1 TypeScript for Smashing People

But TypeScript reports errors! Red squigglies under
isDevelopment, because isDevelopment isn’t defined
anywhere. TypeScript can’t find this particular name.

Custom Ambient Declarations

And TypeScript’s right! The mere existence of
isDevelopment relies on our goodwill.

TypeScript couldn’t figure out what to expect. Is it a Bool-
ean, a string, a composite object, function, or only unde-
fined? We know at the moment that it’s a Boolean. But will
our co-workers, three months ahead?

To make globals known and defined, we can use ambient
type declarations. These types are encompassing, existing
and present on all sides.

We need another d ts file to put somewhere near our types,
where we can define the function heads, global objects, and
variables that we need throughout our program.

Let’s create an ambient d ts file next to our main JavaScript
file. We’ll add one line in there:

declare const isDevelopment: boolean

54 TypeScript in 50 Lessons

We are again in TypeScript language territory. And again,
you can see some similarities to JavaScript. const
isDevelopment is the part that’s taken directly from
JavaScript. The declare keyword in front of it tells Type-
Script that we want to make known that this constant exists.
As it’s just a declaration, we don’t need to add concrete values.

The part after const isDevelopment is a type annotation,
and a little spoiler to chapter 2. With : boolean we tell
TypeScript that isDevelopment is – well – Boolean!
Save this line, and isDevelopment becomes available in
all your JavaScript files.

Installing Ambient Library Declarations

Ambient declarations are not only useful for global flags
but also if you have functions and objects that you expect
to exist. One example would be jQuery! Yes, the one JavaS-
cript library that has taken web development by storm.
And which is still widely used by millions but has some-
how fallen from grace in the last couple of years.

But hey, many people owe their careers to jQuery. So let’s
show a little gratitude and use it for demo purposes in our
simple ship’s storage program.

55Chapter 1 TypeScript for Smashing People

Say we want to update the number of items on a web dis-
play every time we add a new item to our ship’s storage. A
little jQuery snippet in addItem would do the trick:

/**
 * @param {StorageItem} item
 */
function add(item) {
 if(storage.max - item.weight >= storageUsed()) {
 storage.items.push(item)
 currentStorage += item.weight
 }
 $('#numberOfItems').text(storage.items.length)
}

We again get the same error: TypeScript can’t find $, the
jQuery shortcut. But TypeScript is also very clever. Adding
jQuery is very common, so TypeScript already hints at
installing jQuery’s types:

Coming across $ prompts TypeScript to suggest installing jQuery’s types

TypeScript has a big community of people who contribute
custom types to almost any library that hasn’t been written

56 TypeScript in 50 Lessons

in TypeScript but would benefit from type information.
With jQuery still being widely used, it was one of the first
libraries to get this special treatment.

All type definitions are available on npm, the JavaScript
package registry. Node.js and npm are vital parts of a web
developer’s tool set.

We won’t go into the details of how to work with Node.js
and npm, but Jamie Corkhill’s “Get Started With Node: An
Introduction To APIs, HTTP And ES6+ JavaScript” over at
Smashing Magazine11 has you covered.

So, open your favorite terminal (hint: VS Code has one
integrated) and install jQuery’s types via npm in your
current project’s folder:

npm i @types/jquery

And just like that, you get full auto-completion and
type-checking for jQuery in your JavaScript files.

jQuery’s type declarations are ambient, and TypeScript can
work with them. You have to make sure that jQuery exists
when you roll out your application.

11 https://smashed.by/nodeintroduction

57Chapter 1 TypeScript for Smashing People

Lesson 7: Tooling

Adding TypeScript to your development workflow was
designed to be as unobtrusive as possible. If you have a
TypeScript-focused editor like VS Code, adding types and
getting editor support just works. No need for configura-
tions, project setups, or any other tools.

It wasn’t until lesson 6 that we eventually had to install
something: external library type declarations that help
us work with jQuery. This is because VS Code makes a
lot of assumptions about your project structure and
the files you work with. It’s perfectly aligned to get
you started easily.

And that’s understandable. The VS Code team started at the
same time as the TypeScript team, with common goals.12 VS
Code was designed to be the perfect TypeScript editor.

tsc

But what if you need TypeScript outside of VS Code? Be-
cause your co-workers use Sublime Text, or Atom, or VIM,
or something entirely different? The tooling part of Type-

12 https://smashed.by/goto2016

58 TypeScript in 50 Lessons

Script is also available outside of VS Code. We can install the
TypeScript command-line tool globally on our machine:

npm install -g typescript

With that, we get a tool called tsc, the TypeScript compiler.
The TypeScript compiler’s primary task is to take Type-
Script code and compile it down to regular JavaScript. But
with tsc, we can also type-check our JavaScript programs
outside of any editor.

As with any compiler, there are lots of flags and configura-
tions to be set. Let’s go into our project’s root folder.
We create a folder called @types and move ambient d ts
and types d ts into it. Then we run the following command
in our terminal:

tsc --init

After we initialize a new project, we get a prefilled
tsconfig json. This is the main configuration file for TypeScript.
Editors pick it up and behave accordingly, and when you run
tsc in your terminal, TypeScript also refers to this file.

59Chapter 1 TypeScript for Smashing People

tsconfig.json

The prefilled values in tsconfig json are pretty good when
you want to start with a TypeScript project. We, however,
want to type-check regular JavaScript, so we need to make a
couple of adjustments.

This is how your tsconfig json should look:

{
 "compilerOptions": {
 "target": "ES2020",
 "module": "es2020",
 "allowJs": true,
 "checkJs": true,
 "typeRoots": [
 "@types",
 "node_modules/@types"
],
 "esModuleInterop": true,
 }
}

There are a few settings and flags that are preset and are very
useful once we compile TypeScript code to JavaScript code:

1. target: Once we compile TypeScript down to Java-
Script, we need to define a target language specification.

60 TypeScript in 50 Lessons

This can be one of any recent or current ECMAScript
standards (the standard JavaScript is based on), such as
ES3 for ancient browsers, ES5 for legacy runtimes, or
everything from ES2015 to this year’s specification. If
you always go for the latest and greatest, use ESNEXT.

2. module. Another compiler flag that is important once
we work with modules. If we do imports and exports
in TypeScript, how should they be treated by the target
language we compile to? Is it commonjs (used by Node.
js), or es2020 (a modern browser’s module system), or
one of the many that are around?

3. esModuleInterop. Strongly connected to module
above. If you want to mix modules from different
module systems like ES Modules and CommonJS, you
can set this flag to true, and TypeScript will take care
of compatibility.

We might not need them right now, but we will use
them later on. The other compiler options are specifically
useful when type-checking JavaScript:

1. allowJs. This flag tells TypeScript to allow a reference
to regular JavaScript files.

2. checkJs. This flag is similar to the //@ts-check com-
ment we used earlier. It tells TypeScript to type-check
JavaScript files.

61Chapter 1 TypeScript for Smashing People

3. typeRoots. Here we tell the TypeScript compiler what
VS Code originally did: the folders where additional
type information can be found. One is our local @types
folder where we load ambient module declarations.
The other is node_modules/@types where we get the
jQuery types from.

The automatically created tsconfig json file is very well
documented. For every flag, we see default values and a
comment next to it explaining what this flag is supposed to
do. Also, when working with VS Code, we get nice auto-com-
pletion features if we want to set and change settings.

Now the TypeScript compiler is configured, it’s time to type-
check. Let’s run the following command in our terminal:

tsc --noEmit

tsc will pick up settings from tsconfig json. The parameter
--noEmit tells TypeScript that we just want to check types
and not create any output files.

If everything in our code is all right, tsc exits with no error
and no warning. If you want to regularly type-check your

62 TypeScript in 50 Lessons

code during development, you can add a watch mode so
TypeScript reruns type-checking every time you save a file.

tsc --noEmit --watch

And with that, we’ve set up proper tooling that allows us to
type-check JavaScript code outside of an editor, which is a
good foundation for all the TypeScript examples to come!

Recap
In this chapter we had a gentle introduction to TypeScript
from a tooling perspective. Our main goal was to get red
squiggly lines in our code every time something seemed fishy!

Using a TypeScript-powered editor like VS Code, we were
able to activate more and more features step by step:

1. Adding //@ts-check gave us an initial idea of what
was wrong with our code. TypeScript uses a concept
called type inference to automatically detect types of
constants, functions, and variables.

2. Using JSDoc comments we were able to create cus-
tom types and annotate types throughout our code to

63Chapter 1 TypeScript for Smashing People

give TypeScript an even better understanding of our
program’s intent.

3. We heard that TypeScript is a structural type system,
which means that TypeScript cares a lot about the
shape or structure of objects and functions.

4. With type declaration files we wrote our first types in
the TypeScript programming language, and referred to
them in JSDoc comments.

5. Ambient type declarations allowed us to set type
information for globals like jQuery or custom
environment flags.

6. Last, but not least, we installed and configured the
TypeScript compiler, so all implicit settings from
the editor were written down and changeable. This
allowed us to get the same results across editors and
outside of editors. And it prepares us to do even more
with TypeScript in the upcoming chapters.

Now that we’ve taken our first steps with TypeScript
and are a little familiar with the way TypeScript affects
our coding workflow, it’s time to go all in with types in
the next chapter!

64 TypeScript in 50 Lessons

Interlude:
The TypeScript Playground

As you work more with TypeScript, you will start fiddling
around in tsconfig json, making sure your compiler setup is
perfectly aligned with your project. Setting all these flags
for your project sometimes makes it hard to go on type bug
hunting. If a type just doesn’t behave like you want it to, you
can’t say for sure if it’s a library interfering, some ambient
declaration files changing your types, or if the compiler
version is too old.

Instead of fiddling around in your project setup, a safe bet is
to head over to the TypeScript playground.

The TypeScript playground, v3

65Chapter 1 TypeScript for Smashing People

The TypeScript playground is located at typescriptlang.org/
play and offers an online IDE that allows you to experiment
with types. You will find:

1. The most recent compiler versions, so you can find out
if your type works in the version you actively use. This
includes the nightly build, so you can experiment with
upcoming features.

2. Lots of examples in both JavaScript and TypeScript so
you can dig deeper into the possibilities that the type
system has to offer.

3. An editor for tsconfig json, allowing you to set all
compiler flags and get information on possible values.

4. Example output when you run the code, or how it
looks when it is compiled to JavaScript, or how it looks
when you create a declaration file.

5. An export feature so you can continue in your projects,
or you can file a nice issue on GitHub.

For me, the playground is the ideal place to experiment and
work on more complex types before I add them to a project.
The possibility of isolating declarations and types without
any interference from the rest of the project is the ideal
scenario for focus.

66 TypeScript in 50 Lessons

Lesson 8: Compiling Typescript 69

Lesson 9: any, Are You OK? 76

Lesson 10: Control Flow 82

Lesson 11: Typing Objects 88

Lesson 12: Object Type Tool Belt 98

Lesson 13: Typing Classes 105

Lesson 14: Interfaces . 114

Working with Types

We’ve learned that TypeScript is first and
foremost a tooling layer: tooling that tries to
understand our code even better than we do,

pointing us to typos, errors, and possible pitfalls; tooling
that lets us decide how much we want to commit to using it,
and whose features can easily be activated when we want to
get more information about our code.

Now that we are acquainted with TypeScript and feel
more comfortable using it, it’s time to dig a bit deeper into
the eponymous types.

Lesson 8: Compiling TypeScript
Throughout this chapter, we are going to add a couple of
bits and pieces that help us create an online shop: utility
functions for the checkout, some dynamic overlays, and a
little bit of back-end communication.

But this time we want to step out of our comfort zone
and write actual TypeScript. And since TypeScript can’t
be executed by the browser, we have to compile it down
to regular JavaScript.

Configuring the Compiler

To pick up from where we left off in our previous example,
we are doing three things:

1. Rename our main JavaScript file to end with ts. It’s a
TypeScript file now!

2. Create a new file, example-two ts where we can add all
examples from this chapter.

3. Adapt our tsconfig json to ignore JavaScript.

{
 "compilerOptions": {
 "target": "ES2020",
 "module": "es2020",
 "typeRoots": [
 "@types",
 "node_modules/@types"
],
 "esModuleInterop": true,
 }
}

The moment we run

tsc

70 TypeScript in 50 Lessons

in our terminal, we see that two new files pop up: a com-
piled JavaScript file for each TypeScript file. If you open
them, you’ll see that almost nothing has changed from our
original TypeScript files. This is because we haven’t done
anything TypeScript-specific. Yet.

As TypeScript is a superset of JavaScript, all JavaScript code
is TypeScript code. But since TypeScript is a superset, there’s
more to the language.

Our First Type Annotations

In example-two ts we create a utility function for adding
value added tax (VAT) to the regular price of a product. The
price is provided in a currency of your choice; the VAT is a
percentage expressed as a decimal (e.g. 20% is 0.2).

function addVAT(price, vat) {
 return price * (1 + vat)
}

TypeScript’s type inference immediately kicks in. By looking
at the calculation in the function’s body, TypeScript knows
we are dealing with numbers (the multiplication operator
and the numeral 1 suggest that):

71Chapter 2 Working With Types

// vatPrice is of type ‘number’
const vatPrice = addVAT(30, 0.2)

However, we are still allowed to pass anything but numbers
as function parameters:

// vatPrice is of type ‘number’
const vatPriceWrong = addVAT('this is so', 'wrong')

The value of vatPriceWrong is NaN, which stands for “not a
number.” Funnily enough, NaN is of type number, as it can
only result from an operation on type number, but with one
or many values not of type number.

Technically, then, TypeScript is correct. Our software is
correct. But we want to be better than this. We want to make
sure we don’t get values we don’t want to deal with. One
way is to add a default value for vat:

function addVAT(price, vat = 0.2) {
 return price * (1 + vat)
}

Now TypeScript can infer again:

const vatPrice = addVAT(30, 0.2) // OK!
const vatPriceWithDefault = addVAT(30) // OK!

72 TypeScript in 50 Lessons

// Not OK. We expect a number for vat because of the
// default value! This piece causes errors
const vatPriceErrors = addVAT(30, 'a string!')

// This, however, is not quite reasonable, but OK
const vatPriceAlsoWrong = addVAT('Hi, friends!')

This is how far we can get with type inference. If we look at
our function, addVAT, we can see:

• The return value is of type number, because of the kind
of operations inside the function.

• vat is of type number, because the default value
is a number.

• price is of type any.

any is a special TypeScript type – it does not
exist in JavaScript. It accepts any value of any
type, and is thus a top type, encompassing all
other types. TypeScript sets any as the default
type for any value or parameter that is not
explicitly typed or can’t be inferred.

To be even more explicit and intentional with our types, we
have to add type annotations. In chapter 1 we added type

73Chapter 2 Working With Types

annotations through JSDoc comments. Now we can do that
directly in our function head, where it happens:

function addVAT(price: number, vat = 0.2) {
 return price * (1 + vat)
}

Notice that we annotated price to be of type number. We
saw something similar in our d ts files from chapter 1.

With that, TypeScript will add beautiful red squiggly lines
every time we pass a parameter that doesn’t work.

const boom = addVAT('this is not a number!')

Instead of adding type annotations in comments, we add
them directly to the names and parameters we declare. The
type definitions above are short form for:

function addVAT(price: number, vat: number = 0.2):
 number {
 return price * (1 + vat)
}

Here we are even more explicit. We declare the types for
both parameters, and even a return type (the last number
before the curly brace).

74 TypeScript in 50 Lessons

Being so explicit has a special effect on TypeScript: Type-
Script doesn’t infer types anymore – it checks that the
default value for vat and the return value of price * (1 +
vat) match the types you declared in your function head.

Compiling to JavaScript

The browser’s JavaScript runtime can’t run TypeScript,
though, so we have to get rid of all the annotations. Run
tsc again in your terminal. TypeScript will take our new
example-two ts file, create an example-two js file, and the
contents will be the same, with all type annotations
gone – JavaScript you can run in your browser.

Note that after the compile step you lose all
type safety when you run your code: it’s plain
JavaScript once it hits browsers. If somebody
calls the addVAT function outside of your
application, they can still run it with para-
meters of different types, potentially causing
your application to break. If you expose your
functions as an API to the outside world, it’s
always a good idea to do extra typeof checks
and proper error handling.

75Chapter 2 Working With Types

You can also run tsc in watch mode to get regular updates
once you save files:

tsc --watch

If you like, you can play around with some compiler options
at this stage. Set target in your tsconfig json to a different
value (e.g. es5) and see what the compiled output looks like
after you changed the settings. TypeScript not only erases
all types but also takes modern-day JavaScript features and
transpiles them to older ECMAScript versions.

TypeScript that generates JavaScript is called emitting. Re-
member the --noEmit flag from chapter 1? This allows us to
check types without emitting any extra files. If this flag isn’t
set (the default) we always get JavaScript – even when type
checks fail. If we want to make sure we don’t get any emitted
JavaScript output, set noEmitOnError to true in tsconfig json.

Lesson 9: any, Are You OK?
In lesson 8, we made our first type annotations in functions.
Type annotations can be of any primitive type, as well as
composition types that exist in JavaScript. And there are
more that are exclusive to TypeScript. Like any.

76 TypeScript in 50 Lessons

any is the default type if we neither specify a type nor let
TypeScript infer one.

let deliveryAddress // deliveryAddress is any

The moment we assign a value, the type gets more specific:

// deliveryAddress is of type string
let deliveryAddress = '421 Smashing Hill, 90210'

Unless we explicitly specify the type through an annotation:

// deliveryAddress is of type any
let deliveryAddress: any = '421 Smashing Hill, 90210'

Of course, this only works if types are compatible. any can
be anything: it’s a top type and, therefore, all other types are
part of any. If we assign an incompatible value to a variable
of a certain type, TypeScript will throw squiggly lines at us:

// deliveryAddress is of type string,
// why assign a number?
let deliveryAddress: string = 2;

77Chapter 2 Working With Types

Left-Hand Typing vs. Right-Hand Typing

An explicit type annotation always goes first. The moment
we annotate using the colon syntax, the name is of the type
we annotate. All values have to follow and have to be com-
patible. We call this technique left-hand typing, as the typing
happens before (to the left of) the equals sign.

Leaving out type annotations and working first with type
inference is called right-hand typing: typing happens to the
right of the equals sign, be it through a value assignment
and inference, or via the type of a function’s return value.

The same goes for composition types:

let deliveryAddresses = [
 '421 Smashing Hill, 90210',
 '221b Paw-ker Street',
 '4347 Whiskers-ia Lane',
]
// Type of deliveryAddresses is string[]

It’s an array of strings, so the type is string[]. We can ex-
plicitly type deliveryAddresses to string[].

let deliveryAddresses: string[] = []

78 TypeScript in 50 Lessons

// OK
deliveryAddresses.push('421 Smashing Hill, 90210')
// Not OK! 2 is not a string
deliveryAddresses.push(2000)

Both left-hand typing and right-hand typing have their pros
and cons. With left-hand typing, you can think a lot about
your types before you start coding the rest. Right-hand typ-
ing allows you to make up types as you go, which might be a
little bit more JavaScript-y.

The Problem with any

Even though any is the base for all types within TypeScript
and the default for everything TypeScript can’t infer types
from, you will rarely need to declare something as any. You
usually want to have more information about your types
rather than less.

With any, things like this are possible:

const myName: any = 'Fritz the Cat'
myName.firstLetter.makeCapitals()

79Chapter 2 Working With Types

Of course, properties like firstLetter and functions like
makeCapitals don’t exist in regular JavaScript types. But
any doesn’t know that, and doesn’t care. For any, all con-
tracts are fulfilled:

1. myName’s type is any, thanks to left-hand type annota-
tion. 'Fritz the cat' is of type string, but assigna-
ble to any. So this assignment is OK!

2. Since any can be anything, any also allows us to access
properties that might not be there. They could be there
– it can be anything, after all! This is, of course, utter non-
sense, but that’s what you get when you work with any.

any is a wildcard! Use any and you can go all out and forget
about any type-checking at all. So why does something like
any even exist?

This is due to the nature of JavaScript. In JavaScript, you are
not bound to a type, and values from any type can appear
in your variables and properties. Some developers make
excessive use of that!

any reflects JavaScript’s overarching flexibility; you can
see it as a backdoor to a world where you want neither tool-
ing nor type safety. By all means use any, but understand how
it works and what to do with it – use it at your own risk!

80 TypeScript in 50 Lessons

Be certain that you want to use any explicitly as a type an-
notation. And if you want to enter through the backdoor to
JavaScript flexibility, be very intentional through a type cast:

// theObject is an object we don’t have a type for,
// but we know exactly what
// we are doing!
(theObject as any).firstLetter.toUppercase()

Of course, type casts also work with other types. If you want
to make sure you don’t have any somewhere in your code you
don’t expect it to be, set the compiler flag noImplicitAny to
true. TypeScript will then make sure that you either assign
values to correctly infer types or, in the case of any, make sure
that you explicitly annotate or cast to any.

// deliveryAddress is of type any, because we
// didn’t annotate a specific type. Implicit anys are
// hard to track down later on, that’s why it’s good
// to have TypeScript scream at us
function printAddress(deliveryAddress) {
 console.log(deliveryAddress)
}

If we annotate function parameters and variables explicitly
with any, they become easier to track down later on once we
have decided on the real types.

81Chapter 2 Working With Types

Lesson 10: Control flow

any is useful if you don't know which types to expect. The
following function selects a delivery address, either one
that has been passed as a parameter (of type string), or one
from the deliveryAddress string array.

function selectDeliveryAddress(addressOrIndex: any) {
 if(typeof addressOrIndex === 'number') {
 return deliveryAddresses[addressOrIndex]
 }
 return addressOrIndex
}

A couple of things are happening here.

Type Narrowing

With if(typeof addressOrIndex === 'number'),
we do something that connects the world of types with
our JavaScript code.

Since JavaScript has numbers (see chapter 1), we can do
several runtime type checks to make sure that a certain type
is given. This has nothing to do with TypeScript, but does
with JavaScript.

82 TypeScript in 50 Lessons

TypeScript, however, can make use of it. From this point on,
TypeScript knows that addressOrIndex is of type number. So
from this point on, we can access all the features of number.

We can format the number to a fixed-point representation:

if(typeof addressOrIndex === 'number') {
 // OK, because addressOrIndex is a number
 console.log(addressOrIndex.toFixed(2))
}

We can do all number operations on addressOrIndex:

if(typeof addressOrIndex === 'number') {
 // OK, because addressOrIndex is a number
 console.log(addressOrIndex * 2 + 3)
}

Or, in our case, we can use it as a number-based index for
our array. We should check if it’s within the range of the
array, though:

// The comparison to see if addressOrIndex is
// smaller than the number
// of items in deliveryAddresses is also only
// possible because we know
// addressOrIndex is a number

83Chapter 2 Working With Types

if(typeof addressOrIndex === 'number' &&
 addressOrIndex < deliveryAddresses.length) {
 return deliveryAddresses[addressOrIndex]
}

We see a couple of TypeScript concepts in these few
lines of code:

1. Type guards. Type guards perform run-time checks
on types, just like the typeof operator makes sure
we’re dealing with a number at this point.

2. Control flow analysis. Type guards are used to trig-
ger control flow analysis in TypeScript. TypeScript can
analyze the flow of your program to provide the right
types for the next steps.

3. Narrowing down. From the all-encompassing any
type, we narrow down to the type number.

All three concepts are connected and are crucial to every-
thing you are going to do with TypeScript from this point on.

Still any

Yet just as important as the things we do see are the things
we don’t. After narrowing addressOrIndex’s type down to

84 TypeScript in 50 Lessons

number with our type guard, we made it clear that we are
expecting it to be a number at this point.

But what happens outside the if statement? What’s the type
of addressOrIndex? What’s any without number? It’s any!
any is the all-encompassing top type. It can be anything, and
everything is allowed.

So even after we make sure that we deal with number at a
different point, the rest is still quite a lot!

And any in this position is very fragile. We expect
addressOrIndex to be either string or number, but any
allows us to pass anything and return everything, even
if we explicitly type the return value:

function selectDeliveryAddress(addressOrIndex: any):
string {
 if(typeof addressOrIndex === 'number' &&
 addressOrIndex < deliveryAddresses.length) {
 return deliveryAddresses[addressOrIndex]
 }
// Totally OK with any
 return addressOrIndex
}

// Oh no! This is totally OK in TypeScript, but
// myFavouriteAddress is now string, even though we just
// return true? This is going to blow up in runtime!
const myFavouriteAddress = selectDeliveryAddress(true)

85Chapter 2 Working With Types

With the flexibility of any comes fragility and a huge
potential for type mismatches. That’s why we should
avoid any at all costs.

Subtypes and Supertypes

Throughout the book we mention subtypes and super-
types. All types in TypeScript take their place in a hierarchy.
For example, any is the supertype of all types, and string is
a subtype of any.

Every value of string can be assigned to its supertype
any, but not every value of any can be assigned to its
subtype string.

The same concept applies to classes and objects. HTML
Element is the supertype of all HTML elements in the
DOM. HTMLAnchorElement is a subtype of HTMLElement.
Every HTMLAnchorElement can be assigned to type HTML
Element, but not every value of HTMLElement can be as-
signed to an HTMLAnchorElement.

With type narrowing we go down the hierarchy of types
from supertypes to subtypes. In chapter 4 we’ll see the full
potential of Typescript subtypes.

86 TypeScript in 50 Lessons

Enter unknown

Thankfully, TypeScript has a partner to any: unknown. un-
known is also compatible with every type in TypeScript, so
it’s also a top type.

But it’s very inhibiting as well. Where we are allowed
to do everything with any, we aren’t allowed to do any-
thing with unknown.

unknown should make you cautious: we have to provide a
proper control flow to ensure type safety. Let’s see what
happens when we change any to unknown:

function selectDeliveryAddress(addressOrIndex:
unknown): string {

 if(typeof addressOrIndex === 'number' &&
 addressOrIndex < deliveryAddresses.length) {
 return deliveryAddresses[addressOrIndex]
 }
 return addressOrIndex
}

Boom! This is exactly what we want: “Type number is not
assignable to type string.” We must do type checks and
trigger control flow analysis; otherwise, TypeScript will
throw an error!

87Chapter 2 Working With Types

function selectDeliveryAddresses(addressOrIndex:
unknown): string {
 if(typeof addressOrIndex === 'number' &&
 addressOrIndex < deliveryAddresses.length) {
 return deliveryAddresses[addressOrIndex]
 } else if(typeof addressOrIndex === 'string') {
 return addressOrIndex
 }
 return ''
}

The control flow is complete. If we get a value of one of the
two possible types, number or string, we know what to do:
either return the entry from the list of delivery addresses, or
return the delivery address we just entered. Should we pass
anything else, we return an empty string!

Lesson 11: Typing Objects
In the previous examples, we worked a lot with primitive
types: strings, numbers, Booleans. We also learned about
two primitive top types that are not available in JavaScript
but exclusive to TypeScript and TypeScript’s type system:
any and unknown.

88 TypeScript in 50 Lessons

any is both carefree and careless, putting type safety into
the developer’s hands; unknown requires much more caution
and concern.

Composite Types

Both any and unknown are top types that include the whole set
of other types that exist in JavaScript – like composite types.

Composite types are interesting. They can be virtually any
combination of property names and other types, both prim-
itive types and additional composite types. This makes the
total space of possible types virtually endless.

Objects are composite types. Take this article from our on-
line shop, for example:

const book = {
 title: 'Form Design Patterns by Adam Silver',
 price: 32.77,
 vat: 0.19,
 stock: 1000,
 description: 'A practical book on accessibility and
forms'
}

89Chapter 2 Working With Types

To define a type for this object, we can use the type alias syntax:

type Article = {
 title: string,
 price: number,
 vat: number,
 stock: number,
 description: string
}

With that, we just described the shape of the book object
we created earlier. The same principles regarding left-hand
typing and right-hand typing apply, as with primitives:

const movie: Article = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about Helvetica'
}

Here, we annotate the type of movie, which gets type-
checked when we assign a value. Not having the correct
properties, or missing properties altogether, would cause
it to break:

// Property 'description' is missing
const movie: Article = {

90 TypeScript in 50 Lessons

 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
}

Structural Typing and Excess Property
Checks

If we assign a value with properties not in the specified
type, TypeScript displays an error:

// Property 'rating' is not allowed
const movie: Article = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about Helvetica',
 rating: 5
}

However, this isn’t the case when we define the value
elsewhere:

// Property 'rating' is not allowed
const movBackup = {
 title: 'Helvetica',
 price: 6.66,

91Chapter 2 Working With Types

 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about Helvetica',
 rating: 5
}

const movie: Article = movBackup // Totally OK!

Why? TypeScript is a structural type system. This means that
as long as the defined properties of a type are available in an
object, the structural contract is fulfilled. An apple has the
shape of a sphere. Not a perfect sphere. There’s the stalk and
there are bumps all over, but it’s still a sphere.

When assigning movBackup to movie of type Article, all rele-
vant properties match: title, price, vat, stock, and descrip-
tion. The extraneous – or excess – rating property is swept
under the rug. Literally! If we look at the autocompletion fea-
tures that VS Code gives us as soon as we assigned movBackup
to movie, we see that rating is not available anymore:

The structural contract is fulfilled All excess properties are not available anymore

92 TypeScript in 50 Lessons

This doesn’t mean that these properties aren’t there at run-
time. They are! But during development, our tooling envi-
ronment will make sure we only use the properties that are
defined by the type.

TypeScript is very kind to us. We could get values from
anywhere, and those values could change over time, but our
contract still only cares about the right types of a certain set
of properties. This makes our application still valid and type-
safe but allows us to be flexible in other parts of our app.

This is also true if we have two different types with a simi-
lar enough structure to fulfill the contract:

type ShopItem = {
 title: string,
 price: number,
 vat: number,
 stock: number,
 description: string,
 rating: number
}

const shopitem = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about Helvetica',
 rating: 5

93Chapter 2 Working With Types

}

const movie: Article = shopitem // Totally OK!

But why does a direct value assignment after a type annota-
tion cause an error?

// Property 'rating' is not allowed
const movie: Article = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about
Helvetica',
 rating: 5
}

This feature is called an excess property check. Because Type-
Script is kind to us as structures could change across our
application, it will point us to things that might be deliber-
ate mistakes.

Assigning a value right after a type annotation that doesn’t
completely match is most likely an unintentional error.
Why would we annotate a specific type and then assign
something different?

94 TypeScript in 50 Lessons

Of course, having too few properties in our value causes an
error in any case:

const missingProperties = {
 title: 'Helvetica',
 price: 6.66
}

// Boom! This breaks
const anotherMovie: Article = missingProperties

The structural contract is not fulfilled.

Objects as Parameters

We can also use our custom defined types as parameters
in functions:

function createArticleElement(article: Article):
string {
 const title = article.title
 const price = addVAT(article.price, article.vat)
 return `<h2>Buy ${title} for ${price}</h2>`
}

95Chapter 2 Working With Types

And we can pass parameters with no explicit type annota-
tion. Since the structural contract is fulfilled, TypeScript
will be happy:

const shopitem = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about
Helvetica',
 rating: 5
}

createArticleElement(shopItem) // Totally OK!

This also means we can be very intentional with the type we
want for the createArticleElement function, and maybe
do an inline object type with only the properties we expect:

function createArticleElement(
 article: { title: string, price: number, vat: number
}): string {
 const title = article.title
 const price = addVAT(article.price, article.vat)
 return `<h2>Buy ${title} for ${price}</h2>`
}

96 TypeScript in 50 Lessons

Passing elements of type Article still would work:

const movie: Article = {
 title: 'Helvetica',
 price: 6.66,
 vat: 0.19,
 stock: 1000,
 description: '90 minutes of gushing about Helvetica'
}
createArticleElement(movie)

The structural contract is still fulfilled.

But just like it is with direct value assignments, passing an
object with too many properties directly to a function will
trigger excess property checks:

createArticleElement({
 title: 'Design Systems by Alla Kholmatova',
 price: 20,
 vat: 0.19,
 rating: 5
}) // Boom! rating is one property too many

Structural typing is very different from other programming
languages, but it suits JavaScript and how we work with
JavaScript so well. Passing around data that evolves –

97Chapter 2 Working With Types

getting more properties than before or maybe even losing
some properties – is very common. All we should care about
is that all properties that we need are available. This is the
contract for our objects and functions.

Lesson 12: Object Type Tool Belt
When writing TypeScript, we work a lot with object types.
Almost everything in JavaScript is either a function or an
object, so it makes sense to spend some time with them! In
this lesson, we’ll look at a couple of extras that might help
you when working with object types.

typeof

Object types can be very long. Sometimes we work with
data structures that are deeply nested and have tons of
properties. Look at the object that defines a default order in
our online shop:

const defaultOrder = {
 articles: [
 {
 price: 1200.50,
 vat: 0.2,
 title: 'Macbook Air Refurbished - 2013'

98 TypeScript in 50 Lessons

 },
 {
 price: 9,
 vat: 0,
 title: 'I feel smashing subscription'
 }
],
 customer: {
 name: 'Fritz Furball',
 address: {
 city: 'Smashing Hill',
 zip: '90210',
 street: 'Whisker-ia Lane',
 number: '1337'
 },
 dateOfBirth: new Date(2006, 9, 1)
 }
}

This object is a bit complex! We could define the type
in one sitting:

type Order = {
 articles: {
 price: number,
 vat: number,
 title: number
 }[],
 customer: {
 name: string,
 address: {

99Chapter 2 Working With Types

 city: string,
 zip: string,
 street: string,
 number: string
 },
 dateOfBirth: Date
 }
}

Or we could create lots of smaller types:

type ArticleStub = {
 price: number,
 vat: number,
 title: string
}

type Address = {
 city: string,
 zip: string,
 street: string,
 number: string,
}

type Customer = {
 name: string,
 address: Address,
 dateOfBirth: date
}

type Order = {
 articles: ArticleStub[],

100 TypeScript in 50 Lessons

 customer: Customer

}

Or a mix of both. In either case, we end up either maintain-
ing a lot of types or creating unwieldy types. All we wanted
was to get a quick type for a data structure in order to have
better auto-completion and type safety in our methods.

Remember the typeof operator we met in lesson 10? With
the typeof operator, we were able to do type checking
during runtime. In TypeScript’s type system, the typeof
operator takes any object (or function, or constant) and
extracts the shape of it:

type Order = typeof defaultOrder

This gives us a type we can use anywhere in our code:

/**
 * Checks if all our orders have articles
 */
function checkOrders(orders: Order[]) {
 let valid = true;
 for(let order of orders) {
 valid = valid && order.articles.length > 0
 }
 return valid
}

101Chapter 2 Working With Types

The moment you update your defaultOrder object, the type
Order gets updated as well!

Optional Properties

In the previous example, we used a form of Article that
misses two properties we originally defined: stock and
description. That’s already the second time we had no use
for both properties. Remember createArticleElement?

It looks like we need a simple Article type more often than
we think. So what should we do? Create two types, Article
and ArticleStub? Set dummy values for properties that are
not necessary? Set the properties deliberately to undefined?

Any of these sounds a little fishy, and not very JavaScript-
like. Like ways to satisfy the type system that only generate
more code. And TypeScript shouldn’t be like that. It shouldn’t
get in your way. It shouldn’t force you to care about types –
you should care because you want to care.

The best way would be to adapt the original Article type
and set two optional properties:

type Article = {

102 TypeScript in 50 Lessons

 title: string,
 price: number,
 vat: number,
 stock?: number,
 description?: string
}

A question mark after a property’s name declares that prop-
erty optional. What does this mean when we code? Well,
optional parameters are… optional. This means they can be
available, but they could also be missing. We have to check if
they are available:

function isArticleInStock(article: Article) {
 // this check is necessary to make sure
 // the optional property exists
 if(article.stock) {
 return article.stock > 0
 }
 return false
}

Our type becomes much more flexible and can be used in
many more scenarios.

103Chapter 2 Working With Types

Exporting and Importing Types

Now that our Article type is so flexible, we want to share
it with other parts of our application. When working with
JSDoc comments, we imported types on occasion. We can
do the same thing when writing pure TypeScript.

First, we make the type available by exporting it:

export type Article = {
 title: string,
 price: number,
 vat: number,
 stock?: number,
 description?: string
}

Then, we import Article using the same function we
used in chapter 1. But this time we import types via regular
ECMAScript imports:

import { Article } from './example-two'

const book: Article = {
 price: 29,
 vat: 0.2,
 title: 'Another book by Smashing Books'
}

104 TypeScript in 50 Lessons

Like all type annotations, this is erased when we compile.
The same import syntax is used to import other elements
(objects, functions) from the example-two file as well. If we
are only interested in types, we use a slight variation on the
regular ECMAScript import: a type import.

import type { Article } from './example-two'

const book: Article = {
 price: 29,
 vat: 0.2,
 title: 'Another book by Smashing Books'
}

This is especially helpful when you deal with lots of
imports from a particular file – both types and other
elements – and want to separate type information from
the rest of the application.

Lesson 13: Typing Classes
TypeScript can be seen as a programming language that
erases to JavaScript. On top of JavaScript code that exists
and is valid, we add another layer of type information that
disappears once the compiler has run.

105Chapter 2 Working With Types

We can distinguish between declarations that create types
and elements that create values. Types are only available in
TypeScript. They add a new name to an existing type space,
we use them for tooling, and they disappear the moment we
compile down to JavaScript.

Value-creating declarations still exist in JavaScript. Func-
tions, variables – stuff that remains after compilation.
Separating these two worlds helps greatly when working
with TypeScript, as you can strip away the type-creating
declarations and still have proper JavaScript that almost
looks the same.

There is one thing, though, that contributes to both the
type-creating space and the value-creating space: classes.

Classes in JavaScript

Since the ECMAScript 2015 standard, JavaScript features
classes as an alternate syntactic form for the constructor
function and prototype pattern. Here’s a class in pure JavaS-
cript that applies a discount to one of our articles:

class Discount {
 isPercentage
 amount

106 TypeScript in 50 Lessons

 constructor(isPercentage, amount) {
 this.isPercentage = isPercentage
 this.amount = amount
 }

 apply(article) {
 if(this.isPercentage) {
 article.price = article.price
 - (article.price * this.amount)
 } else {
 article.price = article.price - this.amount
 }
 }
}

// A discount that shaves off 10 EUR
const discount = new Discount(false, 10)
discount.apply({
 price: 39,
 vat: 0.2,
 title: 'Form Design Patterns'
})

With a few little extra type annotations, we can have proper
tooling and can make sure that we construct correct objects:

class Discount {
 isPercentage: boolean
 amount: number

107Chapter 2 Working With Types

 constructor(
 isPercentage: boolean,
 amount: number) {
 this.isPercentage = isPercentage
 this.amount = amount
 }

 apply(article: Article) {
 if(this.isPercentage) {
 article.price = article.price
 - (article.price * this.amount)
 } else {
 article.price = article.price - this.amount
 }
 }
}

The moment we create a class, it’s available in the type
space as well:

let discount: Discount
 = new Discount(true, 0.2)

With custom object types, we always describe the shape of
an object and make sure that all values passed as parame-
ters or assigned to variables match that shape.

108 TypeScript in 50 Lessons

Structural Typing with Classes

Since TypeScript is a structural type system, we are also
more interested in the shape of the objects that are created
by a class, rather than the class itself. So what’s the shape of
a class-generated object?

Classes have two parts:

1. The constructor function. We defined our construc-
tor function to take a Boolean isPercentage, and a
number for the amount we want to shave off. The
moment we call new Discount(true, 0.2), we invoke
the constructor function.

2. The second part is a prototype. This is everything
around the constructor function: two fields
(isPercentage, amount) and a function to apply
the discount to an article.

The prototype defines the shape of the object that is re-
turned by invoking the constructor. Now that we know the
shape, we can even assign regularly generated objects to a
variable of type Discount.

let allProductsTwentyBucks: Discount = {
 isPercentage: false,

109Chapter 2 Working With Types

 amount: 20,
 apply(article) {
 article.price = 20
 }
}

This is a valid Discount, as the shape is intact. But it chang-
es the semantics of the Discount class tremendously.

This also works vice versa. We can define an object type,
and create a new Discount object via a constructor:

type DiscountType = {
 isPercentage: boolean,
 amount: number,
 apply(article: Article): void
}

let disco: DiscountType = new Discount(true, 0.2)

In a structural type system, only the shape is important.
Names are sound and smoke.

110 TypeScript in 50 Lessons

Extending Classes

One main feature of classes is that they are extensible.
You can take an existing class and extend it, overriding
and adding features.

/**
 * This class always gives 20 %, but only if
 * the price is not higher than 40 EUR
 */
class TwentyPercentDiscount extends Discount {
 // No special constructor
 constructor() {
 // But we call the super constructor of
 // Discount
 super(true, 0.2)
 }

 apply(article: Article) {
 if(article.price <= 40) {
 super.apply(article)
 }
 }
}

We created a discount class that always applies 20%, but
only if the article’s price is lower than 40 Euro. In this

111Chapter 2 Working With Types

special case, TwentyPercentDiscount is of the same
shape as Discount, which means that their type
declaration is interchangeable:

let disco1: Discount
 = new TwentyPercentDiscount() // OK
let disco2: TwentyPercentDiscount
 = new Discount(true, 0.3) // OK! Semantics changed!

But we can change the shape. Let’s create a validation fea-
ture to TwentyPercentDiscount:

class TwentyPercentDiscount extends Discount {
 constructor() {
 super(true, 0.2)
 }

 apply(article: Article) {
 if(this.isValidForDiscount(article)) {
 super.apply(article)
 }
 }

 isValidForDiscount(article: Article) {
 return article.price <= 40
 }
}

112 TypeScript in 50 Lessons

The shape has changed, which means that the same rules
as for object types apply: if more properties are available,
the shape contract is satisfied; if properties are missing, the
shape contract is not fulfilled:

let disco1: Discount
 = new TwentyPercentDiscount() // Still OK!

// Error! We miss the `isValidForDiscount`
// method
let disco2: TwentyPercentDiscount
 = new Discount(true, 0.3)

By now, classes have become a mainstay in JavaScript,
especially since component-based frameworks rely heavily
on classes to define components. Typing classes might be
a little bit confusing, as it merges the two worlds of type
creation and value creation, but as long as we keep the
main principles of a structural type system in mind,
they’re as easy to use.

And they’d better be. Classes were one of TypeScript’s first
killer features that brought people from the C# and Java
worlds to JavaScript. TypeScript featured one of the first
ECMAScript class implementations as the first proof of con-
cept that classes could work in JavaScript. The syntax hasn’t
changed much since then.

113Chapter 2 Working With Types

Lesson 14: Interfaces

When working with types, you will come across interfaces
at some point. When classes were introduced to TypeScript,
interfaces followed along, carried over from object-oriented
programming languages that were popular at that time.

Historically, classes and interfaces form a strong relation-
ship, with interfaces describing the blueprint of a class:
structural information that has to be implemented by
the respective class. This is where the implements
keyword is introduced.

This sounds an awful lot like the relationship between custom
object types and objects. And in fact, as TypeScript evolved, in-
terfaces became pretty much indistinguishable from custom
object types. There are still a few subtle differences, though.

Describing Interfaces

Let’s say we work with another team that works on a differ-
ent part of the same online shop. They write their own code
but use the same data structures. And they prefer interfaces.

An Article type in our codebase becomes a ShopItem inter-
face in their codebase.

114 TypeScript in 50 Lessons

// Our Article type
type Article = {
 title: string,
 price: number,
 vat: number,
 stock?: number,
 description?: string
}

// Our friend’s ShopItem
interface ShopItem {
 title: string;
 price: number;
 vat: number;
 stock?: number;
 description?: string;
} // And yes, the semicolons are optional

The syntactic differences are so subtle, you’d be forgiven
for hardly noticing them. Of course, both Article and
ShopItem are compatible, because their shape – their
structure – is the same:

const discount = new Discount(true, 0.2)
const shopItem: ShopItem = {
 title: 'Inclusive components',
 price: 30,
 vat: 0.2
}

115Chapter 2 Working With Types

// Discount.apply is typed to take `Article`
// but also takes a `ShopItem`
discount.apply(shopItem)

If you use classes, both interfaces and types can be
implemented:

// Implementing Interfaces
class DVD implements ShopItem {
 title: string
 price: number
 vat: number
 constructor(title: string) {
 this.title = title
 this.price = 9.99
 this.vat = 0.2
 }
}
// Implementing Types
class Book implements Article {
 title: string
 price: number
 vat: number

 constructor(title: string) {
 this.title = title
 this.price = 39
 this.vat = 0.2
 }
}

116 TypeScript in 50 Lessons

With that, we make sure that the class we’re creating ad-
heres to the shape we want. If we miss any properties that
are required, TypeScript alerts us:

// Nope, we missed the property `title`!
class Book implements Article {
 price: number
 vat: number

 constructor() {
 this.price = 39
 this.vat = 0.2
 }
}

Of course, the shape of objects of types Book and DVD are the
same as Article or ShopItem, so our Discount class works
on them as well:

let book = new Book('Art Direction on the Web')
discount.apply(book)

let dvd = new DVD('Contagion')
discount.apply(dvd)

Discounts everywhere!

117Chapter 2 Working With Types

Declaration Merging

At first glance, interfaces and types seem to be entirely
the same. Remember that for later, when we see advanced
techniques with object types. You can substitute interfaces
for object types at any time. Other than historically, where
are the differences? Aside from some nuances, the biggest
difference is declaration merging.

Declaration merging for interfaces means we can declare an
interface at separate positions in the same file, with differ-
ent properties, and TypeScript combines all declarations
and merges them into one.

We can take our ShopItem declaration from earlier on,
and extend them with an array of reviews at a totally
different position:

interface ShopItem {
 reviews: {
 rating: number,
 content: string
 }[]
}

Adding this couple of lines will break all usage of ShopItem
throughout our file, as the reviews property is not optional,
and DVD and other elements will have to implement it.

118 TypeScript in 50 Lessons

Declaration merging in one file, while possible, may seem a
little nonsensical. Isn’t it more readable and understandable
if we have all properties in one declaration? Of course it is!

But there’s a special use case where declaration merging
makes a lot of sense. Think back to chapter 1, when we de-
fined a global variable in an ambient type definition file.

When writing JavaScript, we often get into situations where
variables, functions, or classes from somewhere outside be-
come available globally. Not only an isDevelopment flag, but
also maybe an analytics script that allows you to get statis-
tics on your site’s usage. Or the YouTube API that allows you
to include and play different YouTube movies.

All these things usually hang themselves into the global
object. In browsers, that’s the window object. The window
object is very much defined through the Window interface.

Wouldn’t it be great if we could extend Window from any-
where in our code, making global flags, APIs, and functions
available anywhere? This is just a few lines’ worth of code:

declare global {
 interface Window {
 isDevelopment: boolean
 }
}

119Chapter 2 Working With Types

First, we open the global namespace. Namespaces are
a feature that came before the times of proper module
encapsulation. They are mostly used when we want to
spread type declarations across files, like all declarations
that are globally available (window, document, navigator,
and so on).

Namespace declarations can also be merged.

Next, we open the Window interface. We don’t overwrite the
entire type; we attach a custom field to it: isDevelopment
of type boolean. With that declaration, anywhere
in our code, we can immediately check if we are in
development mode:

class Discount {
 ...
 apply(article: Article) {
 ...
 // Here we check if we are in dev mode
 if(window.isDevelopment) {
 console.log('Another discount applied')
 }
 }
}

The Window interface is usually very aware of the current
state of browsers that support a certain compile target in
your tsconfig json. Which means it’s possible there are fea-

120 TypeScript in 50 Lessons

tures available in your browser that don’t yet have types in
TypeScript, so it could throw errors.

This is because TypeScript goes for the lowest, common
denominator in Window. If you want to use newer features
that aren’t available right away, and test accordingly if they
do exist, you can use the technique above to add proper
types. I’ve published an article on Fettblog (my website) that
describes how 'ResizeObserver' types have been added to
Window,14 and how to safely use them.

Recap

We’ve covered a lot in this chapter. Even though TypeScript
is just a small layer on top of JavaScript, the type system
itself is so manifold and flexible that we can do a ton of
things with it. And this is just the start! Let’s recap:

1. We learned how type annotations work and how we
can erase to JavaScript using the TypeScript compiler.
Turns out, TypeScript not only adds a type layer but
compiles down to various versions of ECMAScript.

2. We saw that TypeScript comes with its own primitive
types, like any: a wildcard that lets you go haywire
with your type safety, but ensures you are not blocked
by types when you know better.

14 https://smashed.by/resizeobserver

121Chapter 2 Working With Types

3. This makes TypeScript a gradual type system. Use
types when you feel like it and when you see a benefit,
not when a tool tells you to.

4. We learned about type guards, control flow and narrow-
ing down. Since JavaScript functions can take argu-
ments of any type, we can do run-time type checks
with typeof and infer new types from it.

5. We learned how to type objects, and what the key
aspects of a structural type system are.

6. We also got a ton of tools to make creating types a lot
easier. Make them on the go when you write regular
JavaScript.

7. We also delved into a couple of object-oriented fea-
tures, like classes. Classes are different as they contrib-
ute to both the value-creation and type-creation spaces.

8. We ended the chapter learning about interfaces (the
older sibling of object types, brought up differently but
which, in the end, turned out almost indistinguishable
from its younger counterpart). The only feature worth
noticing is declaration merging, allowing us to extend
interfaces when we see a need for it.

This is the pure baseline of working with types. The rest
of the book will focus on getting the best types, the best
editor experience, and the most robust yet flexible type
safety for your projects.

122 TypeScript in 50 Lessons

Interlude: Borrowed Language

TypeScript has two major aspects:

1. Innovation in a type system that allows the maximum
type-safety for all possible JavaScript scenarios.

2. Provide the first implementation of new JavaScript
features that can be transpiled to older versions of
ECMAScript. This means that no language innovation
happens without the proper process in TC39,15 the
ECMAScript standards committee.

The second part was not always the case. Back when Type-
Script was created, lots of modern-day JavaScript language
features weren’t available – not even on the roadmap! This
was a different JavaScript back then, a lot clunkier and raw.
Some would say beautiful.

Even if JavaScript has evolved a lot since then, in 2012 people
thought they needed some language features like classes to
make their code more structured and scalable.

This encouraged the designers of TypeScript to include
quite a few features that come from the object-oriented pro-
gramming model of classic languages like Java or C#. Some,
like classes, appeared in JavaScript. Others will most likely
never land in JavaScript.

15 https://tc39.es/

123Chapter 2 Working With Types

But even if they don’t appear in JavaScript, they are still
here. And you can use them. If you’re sure. These features
are not bad – not at all! But they have some gotchas you
should be aware of.

Property Access Modifiers

The way we write classes in this book is the usual JavaScript
way of writing classes. TypeScript classes can do a lot more,
even modifying access to certain properties:

class Article {
 public title: string
 private price: number

 constructor(title: string, price: number) {
 this.title = title
 this.price = price
 }
}

const article
 = new Article('Smashing Book 6', 39)

console.log(article.price)

Access modifiers are useful if you follow object-oriented
programming patterns, but this feature is only available in

124 TypeScript in 50 Lessons

TypeScript. Nothing prevents you from accessing proper-
ties declared private when executing JavaScript. Further-
more, JavaScript now has its own private access modifier,
that puts a little fence in front of properties nobody
outside should see:

class Article {
 #price: number

 constructor(price: number) {
 this.#price = price
 }
}

Along with new keywords and changed semantics comes
also a lot of syntactic sugar that makes you more productive
but deviates even further from JavaScript:

class Article {
 // This constructor sets properties
 // automatically

 constructor(private price: number) {
 // Nothing to do here, this.price is
 // still available
 }
}

125Chapter 2 Working With Types

If you do a lot of object-oriented programming, those features
might be useful to you. But be aware that this is added syntax
on top of JavaScript that will not find its way into the stan-
dard. If you don’t want to wade in to added syntax, it might be
a good idea to stick with standard JavaScript class features.

Abstract Classes

Also coming from the OOP world: abstract classes. When
interfaces describe the blueprint of implementations, and
classes are implementations, abstract classes are something
in-between. They implement a lot but leave out important
details to be filled out by real classes:

abstract class Discount {
 // This needs to be implemented
 abstract isValid(article: Article): boolean;

 // This is already implemented
 apply(article: Article) {
 // Like before ...
 }
}

TypeScript reports errors when you forget to implement
isValid, and you’re not allowed to create an object with an

126 TypeScript in 50 Lessons

abstract class. But again, only in TypeScript. Abstract classes
are emitted to JavaScript, but their semantics are similar to
regular classes. Only now, they’re missing entire implemen-
tation details. This can cause weird errors at runtime that we
can easily avoid.

Enums

Enums (short for enumerations) allow you to bundle a cou-
ple of types and use them throughout your code:

enum UserType {
 Admin,
 PayingCustomer,
 Trial
}

function showWarning(user: UserType) {
 switch(user) {
 case UserType.Admin:
 return false;
 case UserType.PayingCustomer:
 return false;
 case UserType.Trial:
 return false;
 }
}

127Chapter 2 Working With Types

They have one significant aspect: they contribute to both
the type-creation space and the value-creation space, emit-
ting code. Occasionally. Adding a const keyword before
enum UserType prevents code emitting.

While this type information might be handy at times, they
are not as safe as other structures (which we will see in
later lessons), nor do they look anything like TypeScript’s
syntax in the emitted code. Also, forgetting the const
keyword can result in lots of additional unnoticed lines of
code in the final output, and with a significant increase in
file size when shipped.

Use with care. If you want to know more, Axel Rauschmayer
has written a lengthy post on all aspects of enums.16

A Rule of Thumb

There is more, and the official TypeScript documentation17
provides a lot of insight if you want to learn. But becoming
an expert TypeScript developer doesn’t require it. The magic
nowadays lies in the type system and the mammoth task to
make all of JavaScript understandable.

16 https://smashed.by/enums
17 https://typescriptlang.org

128 TypeScript in 50 Lessons

For us, this means that we can stick to the separation
of concerns:

1. In terms of programming language, write JavaScript –
write modern JavaScript. Let TypeScript make sure you
can write modern JavaScript.

2. In terms of the type system, learn the type system.
Find ways to annotate your functions so you get the
best tooling and the best possible type safety. The rest
of this book is going to help you with exactly that.

129Chapter 2 Working With Types

Lesson 15: A Search Function 134

Lesson 16: Callbacks . 141

Lesson 17: Substitutability 150

Lesson 18: This and That 160

Lesson 19: The Function Type Tool Belt 168

Lesson 20: Function Overloading 176

Lesson 21: Generator Functions 185

Functions

We want to get the best possible tooling for
ourselves and our colleagues. If you don’t cur-
rently share your code with other people, then

your future self wants you to get the best possible tooling.
Code you remember is good. Code that tells you what it
means is better!

Now that we know the basics of TypeScript’s types, we’ll set
the following goals for the rest of the book:

1. Write modern JavaScript!

2. Find the right types to make sure our
JavaScript makes sense.

In chapter 3 we’ll take a good look at functions. Functions
are essential in JavaScript, and there are lots of different
typing scenarios available to us. To make functions tangible,
we’ll look at a website’s search field: a search field with
type-ahead, that shows some results the moment a user
types a search query.

For the following examples, it’s recommended to add the
strict flag to your tsconfig json and set it to true. Even
more red squiggly lines!

Lesson 15: A Search Function

Functions are everywhere in JavaScript. We saw a few func-
tions in the last couple of examples. Functions contribute to
the value-creation space of TypeScript.

Their parameters have types, which are any by default and
can be inferred from default values. The return values have
types; they can be inferred from the actual value that we
return in the function body.

We are going to create a search field for our website. The
moment we enter a query, we call a back end that provides
us with results in JSON. In our program, we create a search
function that takes query parameters, calls the back-end
search API, and returns the correct results.

Typing Function Heads

Let’s look at the function head of our search function. We use
the declare keyword to make the function available without
implementing a function body at the moment. This is a great
way to think about types and the function’s interface before
going into the details. We’ll remove the declare keyword later
and make sure we get a proper implementation.

134 TypeScript in 50 Lessons

// A helper type with the results we expect
// from calling the back end
type Result = {
 title: string,
 url: string,
 abstract: string
}

/**
 * The search function takes a query it sends
 * to the back end, as well as a couple of tags
 * as a string array, to get filtered results
 */
declare function search(
 query: string,
 tags: string[]
): Result[]

We explicitly typed the parameters and return values of the
function head, which is good practice as it lets you make
sure you not only get the right return values and process
them further, but you can also validate your implementa-
tion against the explicit types you expect. The function head
has some issues:

1. Tag filters are required. You wouldn’t be able to call the
search function without any tags provided, even if it’s
just an empty array.

135Chapter 3 Functions

2. The search function is implicitly synchronous. We call
search and expect an array of results in return. Calling
a back end usually involves an asynchronous opera-
tion. Well, at least it should! In our case, we want the
search function to work asynchronously.

Let’s solve each issue.

Optional Parameters

Tags are nice to filter results based on preferences. Think of
a website that offers articles on JavaScript, CSS, design, art
direction, and UX. Can you think of any? The moment you
search for “Ember,” for example, you need to distinguish be-
tween the JavaScript framework and the digital scrapbook.
That’s why you select tags.

But tags are optional, at least in our case. Our function
doesn’t know yet:

search('Ember', ['JavaScript']) // Works
search('Ember') // Errors! Tags are missing
search('Ember', []) // Nasty workaround

Passing empty values doesn’t seem very JavaScript-like. Just
like objects, functions can take optional parameters, marked
with a question mark:

136 TypeScript in 50 Lessons

declare function search(
 query: string,
 tags?: string[]
): Result[]
search('Ember') // Yes!
search('Ember', ['JavaScript']) // Also yes!
search('Ember', ['JavaScript', 'CSS']) // Yes yes!

Also, just like optional properties in objects, you have to
check if they’re available once you write your function body.

Asynchronous Back-End Calls

To make our function correctly asynchronous, we are going
to work with promises. Promises are JavaScript’s main
construct to deal with asynchronous tasks. They’re called
promises because they promise to resolve to a value…
eventually. We just don’t know when. One of the most pop-
ular promise-based tasks is fetch, a handy way to call a back
end and receive data.

Let’s use fetch to implement our search function. Remove
the declare keyword from the function head. We are not
declaring a function anymore, we’re implementing it. Also,
for now, let’s remove the return value type from our func-
tion declaration. We’re going to add one later on.

137Chapter 3 Functions

function search(query: string, tags?: string[]) {
 // Based on our input parameters, we build a query
 // string
 let queryString = `?query=${query}`

 // tags can be undefined as it's optional.
 // let's check if they exist
 if(tags && tags.length) {
 // and add all tags in that array to the
 // query string
 queryString += `&tags=${tags.join()}`
 }

 // Ready? Fetch from our search API
 return fetch(`/search${queryString}`)
 // When we get a response, we call the
 // .json method to get the actual results
 .then(response => response.json())
}

A few things to notice here:

1. We have to check if tags exists. When you hover over
the optional tags parameter in your function body,
you can see that it can be a string array, but it can also
be undefined. Only if we check the value exists will
TypeScript allow us to use the array methods and
append to the query string.

138 TypeScript in 50 Lessons

2. fetch returns a promise. Promises are then-able,
which means that once the value is here, we can access
the callback of the then function. It’s interesting to
watch types at this point. Hover over fetch to see that
the fetch function returns a Promise<Response>,
and the response param inside the callback is of type
Response. If you ever see a type with < and > signs,
remember the name generic. Promises can be of so
many things. If we want to specify the type of the
return value, we use a generic to set it to; for example,
Response. We are going to see a lot of generics in the
later chapters of the book.

One nice thing about TypeScript is that you don’t need to
know all APIs by heart. Once you call fetch, your editor
gives you hints on what you can pass as arguments. When
you are in the then callback, you don’t have to know that
response has a .json() function. You can browse through
a list of suggestions from your editor and select the one
you think is most appropriate. Most likely you will stop at
.json() and think: “Ah yes, that’s what I was looking for.”

fetch has a return value of type Promise<Response>.
The next then returns the return value of response.json,
which also becomes the return value type of our search
function. Type inference!

139Chapter 3 Functions

However, the type of response.json’s return value is
Promise<any>. And rightfully so! How should TypeScript
know what you get once you call your back end? What we
want is actually what we get: a promise of results. Or, in
types: Promise<Result[]>

Here we have to be explicit, either through a type cast:

function search(query: string, tags?: string[]) {
 ...
 return fetch(`/search${queryString}`)
 .then(response =>
 response.json() as Promise<Result[]>)
}

which is OK, as we are more explicit about the type at
the position where we get any. Or the other possibility is
the function head:

function search(
 query: string,
 tags?: string[]): Promise<Result[]> {
 ...
 return fetch(`/search${queryString}`)
 .then(response => response.json())
}

140 TypeScript in 50 Lessons

Both versions work the same: any is compatible with any
other type. It’s the wildcard, the happy-go-lucky type where
anything can happen. We say explicitly that we expect a
Result array instead of any. And TypeScript accepts that!

Which version you use is up to you. Type casts are quick
and available where they are needed, but might be over-
looked at times. I prefer explicit function heads and to keep
the JavaScript inside the function body as it is.

Lesson 16: Callbacks
In the previous lesson, we dealt with types of return values and
parameters in functions. But functions have types too! Let’s
have a look at our search function from the previous lesson:

function search(
 query: string,
 tags?: string[]
): Promise<Result[]> {
 let queryString = `?query=${query}`
 if(tags && tags.length) {
 queryString += `&tags=${tags.join()}`
 }
 return fetch(`/search${queryString}`)
 .then(response => response.json())
}

141Chapter 3 Functions

We can get the function’s type most easily by calling typeof:

type SearchFn = typeof search

When you hover over SearchFn, you’ll see the expanded
type definition for a function:

type SearchFn = (
 query: string, tags?: string[] | undefined
) => Promise<Result[]>

This is very similar to JavaScript’s arrow notation for func-
tions. We see: the opening of a function’s head, declaring
the parameter query, which is a string; tags, which can be a
string array or undefined since it’s optional; then comes the
arrow, and the function returns a promise of results.

Of course, we can type the function type as defined up
there, without using typeof. But typeof is handy!

Function Types in Objects

So what can we do with function types? Quite a lot! We can
define complex object types that contain functions:

142 TypeScript in 50 Lessons

type Query = {
 query: string,
 tags?: string[],
 assemble: (includeTags: boolean) => string
}

This defines a query object that not only has the query itself
but optional tags and a function that assembles the query
string for a possible search. An object like this would satisfy
the contract:

const query: Query = {
 query: 'Ember',
 tags: ['javascript'],
 assemble(includeTags = false) {
 let query = `?query=${this.query}`
 if(includeTags && typeof this.tags !==
'undefined') {
 query += `&${this.tags.join(',')}`
 }
 return query
 }
}

And types are composable, so we can define the function
type for assemble at a different position:

143Chapter 3 Functions

type AssembleFn = (includeTags: boolean) => string
type Query = {
 query: string,
 tags?: string[],
 assemble: AssembleFn
}

This behaves just like JavaScript, where we can also define
functions outside of the main object.

Function Types in Functions

Let’s say we want to have our search function be pluggable,
and want to create different search functions for different
scenarios. Maybe some that work differently, but always
listen to the same parameters: a query, a list of tags. And
they return a promise with results. We already defined the
search function like this:

type SearchFn = (
 query: string, tags?: string[] | undefined
) => Promise<Result[]>

We can use this function type to create different functions
that follow the same signature.

144 TypeScript in 50 Lessons

This is incredibly helpful for callback functions. Functions
are first-class citizens in JavaScript and can be used as val-
ues, just like any string or number. So we can pass functions
as arguments to another function. Usually, this type of
function is called a callback function, as they should call back
to the spot where the function has been invoked. Let’s write
a function that combines a few workflows for our search:

1. selecting the element where the user inputs their
query

2. calling a search

3. showing the results

It takes three arguments:

1. the ID of the input element

2. the ID of the element to present the results in

3. a search function

function that needs
the result

do something with
the result executing function

result

Callbacks are pluggable functions
For any task that can’t return a
result directly – maybe due to
asynchronous execution – we can
pass a function that takes the
result and works with it

145Chapter 3 Functions

The types of the two parameters are pretty much straight-
forward. Both IDs are strings. The search function uses
said function type.

Again, think first about the function head before developing
the body. Let’s write a function head that takes two strings
for the IDs of our elements, as well as a search function:

declare function displaySearch(
 inputId: string,
 outputId: string,
 search: SearchFn
): void

Of course, we could type the function type explicitly. But
sometimes it’s much more readable to have a separate type
for that. We use void as the return value as we don’t expect
anything to return.

Anonymous Functions

Later on we’ll deal with the meaning of void (lesson 17) and
the implementation of displaySearch (lesson 18). For now,
let’s focus on the possible search functions we can pass; for
example, the original search function:

146 TypeScript in 50 Lessons

displaySearch('searchField', 'result', search)

Or an entirely new one that we just made up. Look at this
test function:

displaySearch(
 'searchField',
 'result',
 function(query, tags) {
 return Promise.resolve([{
 title: `The ${query} test book`,
 url: `/${query}-design-patterns`,
 abstract: `A practical book on ${query}`
 }])
 }
)

We notice a few things here:

1. The function is anonymous: it has no name. It has just
been passed as an argument to displaySearch.

2. But it still follows the contract of SearchFn. Both
parameters are here, and it returns a promise with a
Result array, even if there’s just one entry.

3. We don’t need any type annotations. All type annota-
tions are defined through SearchFn, and TypeScript

147Chapter 3 Functions

infers the correct types: query becomes a string,
tags becomes a string array. And we get red squiggly
lines if we don’t return a promise with values of the
shape of Result[].

We get the same type inference if we extract the function
into its own anonymous function and assign it to a const
that is explicitly typed with SearchFn:

const testSearch: SearchFn = function(query, tags) {
 // All types still intact
 return Promise.resolve([{
 title: `The ${query} test book`,
 url: `/${query}-design-patterns`,
 abstract: `A practical book on ${query}`
 }])
}

TypeScript has a structural type system. This also applies
to functions: the shape has to be intact. Function shapes,
however, work a little differently: structure and shape aren’t
defined by the names of arguments as in objects, but by the
order of arguments. This means we can rename our param-
eters and still retain types:

const testSearch: SearchFn = function(term, options) {
 // term is a string (as defined by query)
 // options is an optional string array
 return Promise.resolve([{

148 TypeScript in 50 Lessons

 title: `The ${term} test book`,
 url: `/${term}-design-patterns`,
 abstract: `A practical book on ${term}`
 }])
}

This is especially important if different names make more
sense. What if our back end doesn’t work with tags but with
different parts of a bigger portal, like documentation, a market-
ing website, or forum? A name like sections or subdomains
would make more sense than the very generic name tags.

And we can also completely remove the optional parameter
tags (the string array) if we don’t have any use for it:

const testSearch: SearchFn = function(term) {
 // All types still intact
 return Promise.resolve([{
 title: `The ${term} test book`,
 url: `/${term}-design-patterns`,
 abstract: `A practical book on ${term}`
 }])

}

This is the power of structural type systems for functions.
But you know what? We can change even more.

149Chapter 3 Functions

Lesson 17: Substitutability

In the last lesson, we saw that we can drop function param-
eters if the type declares this argument optional. There is a
little more to that. We can also drop arguments entirely if
we don’t have any use for them:

// This is a valid search Function
const dummyContentSearchFn: SearchFn = function() {
 return Promise.resolve([{
 title: 'Form Design Patterns',
 url: '/form-design-patterns',
 abstract: 'A practical book on accessible forms'
 }])
}

This function satisfies the type contract by SearchFn,
even though at first the function’s shape doesn’t look
compatible. Except that it is. This has something to do with
the way JavaScript works.

Number of Parameters

In JavaScript, we can call a function with any amount of
parameters, no matter how many we define in the function’s
head. This can lead to two edge cases.

150 TypeScript in 50 Lessons

First, we call the function with missing arguments. Since
we most likely depend on getting values inside the func-
tion’s body, this causes the function to fail miserably. But
this is covered by TypeScript’s type checks.

If a function signature requires us to pass arguments,
TypeScript will report an error if we don’t – and give
us red squigglies.

// Calling our original search function.
// TypeScript tells us that we need to pass
// at least a query
search()

Good! TypeScript makes sure we pass the parameters re-
quired by the function type. So calling a function is covered.

The second edge case, however, is different: we can pass too
many parameters to a function, and the excess parameters
simply get ignored. This is fine. Why should we define func-
tion parameters in our function’s head if we don’t have any
use for them in our function’s body?

JavaScript still allows us to pass the parameters; we just don’t
do anything with them. This makes dummyContentSearchFn,
with no parameters, compatible with the type SearchFn.

151Chapter 3 Functions

A nice side effect is that since we explicitly typed
dummyContentSearchFn to SearchFn, and assigned an anon-
ymous function, we can’t call dummyContentSearchFn with-
out the right amount of parameters defined by SearchFn.

dummyContentSearchFn('Ember') // Good!
dummyContentSearchFn('Ember', ['JavaScript']) // Good!

// Not good, as an explicitly typed SearchFn requires
// us to pass parameters
dummyContentSearchFn()

If we refactor dummyContentSearchFn to be a named
function and not explicitly typed, the behavior is
fundamentally different:

function dummyContentSearchFn() {
 return Promise.resolve([{
 title: 'Form Design Patterns',
 url: '/form-design-patterns',
 abstract: 'A practical book on accessible forms'
 }])
}

dummyContentSearchFn('Ember') // Nope!
dummyContentSearchFn('Ember', ['JavaScript']) // Nope!

// Good!
dummyContentSearchFn()

152 TypeScript in 50 Lessons

This is because TypeScript again checks for the contract
of the function type. And this time, the contract is to not
have any arguments.

We still can pass dummyContentSearchFn to displaySearch.
Inside displaySearch, dummyContentSearchFn takes on
the shape of SearchFn, even though it does nothing with
the parameters passed.

displaySearch('input', 'output', dummyContentSearchFn)

TypeScript calls this behavior substitutability. We can sub-
stitute one function signature for another if it makes sense.
Leaving out parameters if we don’t have any use for them
inside the function body is OK. The code will still work. This
is one of the many ways TypeScript is less strict and more
pragmatic, to conform to the way JavaScript works.

void

Substitutability works because the types of the return
values stay the same. In both dummyContentSearchFn
and testSearchFn, we return a promise with a result
array. Passed parameters disappear the moment we don’t
need them anymore.

153Chapter 3 Functions

There are situations where we can also substitute the return
type of the function: when the return type is void.

void as a type is a curious construct in TypeScript, as it
tries to mirror the behavior of void in other programming
languages, but it has a lot more in common with void in
JavaScript. There’s a whole article on void in JavaScript and
TypeScript on my weblog.18

In JavaScript, all functions have a return value. If we don’t re-
turn one on our own, the return value is by default undefined.
In TypeScript, every function has a return type. If we don’t
explicitly type or infer, the return type is by default void.

void in TypeScript is a different way of saying undefined.
The void type can take only one value, which is undefined,
but there are some interesting features to it.

Let’s refactor, for now, the search function to not return a
promise but to pass the results to a callback.

// We add a callback as second parameter, as
// optional parameters always have to be last
function search(
 query: string,
 callback: (results: Result[]) => void,
 tags?: string[]
) {

18 https://smashed.by/void

154 TypeScript in 50 Lessons

 let queryString = `?query=${query}`
 if(tags && tags.length) {
 queryString += `&tags=${tags.join()}`
 }
 fetch(`/search${queryString}`)
 .then(res => res.json() as Promise<Result[]>)
 // Here, we pass the results to our callback
 .then(results => callback(results))
}

A similar function to the original one, but the second param-
eter is now a callback that takes a result array and returns
void. We can use the new search function like this:

// logs all results to the console
search('Ember', function(results) {
 console.log(results)
})

And, as we are used to with callbacks, we can pass any func-
tion that resembles the function’s shape:

function searchHandler(results: Result[]) {
 console.log(results)

}
search('Ember', searchHandler)

155Chapter 3 Functions

But here’s the thing: we can also pass functions that have a
different return type.

// Search handler now returns a number
function searchHandler(results: Result[]): number {
 return results.length
}

// Totally OK!
search('Ember', searchHandler)

We can substitute any return type for void. Inside the call-
ing function, the return type will be handled as undefined,
which means you can’t do anything with it that wouldn’t let
TypeScript scream at you with red squiggly lines:

function search(
 query: string,
 callback: (results: Result[]) => void,
 tags?: string[]
) {
 ...
 fetch(`/search${queryString}`)
 .then(res => res.json() as Promise<Result[]>)
 .then(results => {
 const didItWork = callback(results)
 // didItWork is undefined! This causes an error
 didItWork += 2
 })
}

156 TypeScript in 50 Lessons

This is also to conform to the way JavaScript works. There
are occasions where we pass callback functions that return
something even though the function called doesn’t do any-
thing with it, especially if you want to reuse functions over
and over in different scenarios.

// This function shows results in an HTML element
// but also returns the container element that
// has been filled
function showResults(results: Result[]) {
 const container
 = document.getElementById('results')
 if(container) {
 container.innerHTML = `
 ${results.map(el => `${el.title}`)}
 `;
 }
 return container;
}

// Somewhere in our app, we show a list of
// pages on click

button.addEventListener('click', function() {
 const el = showResults(storedResults)
 if(el) {
 el.style.display = 'block'
 }
})

// But hey, this function also makes a good
// search handler

157Chapter 3 Functions

search('Ember', showResults)

If you really want to make sure that no value is returned, you
can either put void in front of callback in plain JavaScript:

function search(
 query: string,
 callback: (results: Result[]) => void,
 tags?: string[]
) {
 ...

 fetch(`/search${queryString}`)
 .then(res => res.json() as Promise<Result[]>)
 // void is a keyword in JavaScript returning
 // undefined
 .then(results => void callback(results))
}

or use undefined as a type:

// We change the return type of callback to
// undefined

158 TypeScript in 50 Lessons

function search(
 query: string,
 callback: (results: Result[]) => undefined,
 tags?: string[]
) {
 ...
}

function searchHandler(results: Result[]): number {
 return results.length
}

// This breaks now!
search('Ember', searchHandler)

As we can’t substitute undefined for number. Substitutabil-
ity is a concept in TypeScript that you will stumble upon
if you work a lot with functions. Instead of being too strict
with exact function shapes, it complements the way JavaS-
cript works with functions: asking only for the parameters
that you actually need.

There are, however, some occasions when a TypeScript
function declaration could have more arguments than its
JavaScript counterpart. And it, literally, has to do with this.

159Chapter 3 Functions

Lesson 18: This and That

It’s time to implement the displaySearch function, to show
us another side of callbacks and functions that is unique to
TypeScript. This is our function’s head:

declare function displaySearch(
 inputId: 'string',
 outputId: 'string',
 search: SearchFn
): void;

We want to select elements in our markup via document.
getElementById and

1. Get the current value out of the input field.

2. Show the results in the output element.

Let’s go!

The Implementation

Let’s assume that this is the necessary markup we want to
enhance with our little function:

<form action="/search" method="POST">

160 TypeScript in 50 Lessons

 <label for="search">Search the site</label>
 <input type="search" id="search">
 <button type="submit">
</form>
<div id="output" hidden>
</div>

In true progressive enhancement fashion, this search field
works perfectly well and leads people to a search page with all
the results based on the term they entered in the search field.

But we want to enhance it with dynamic features: loading
search results as we type, showing the first five in the
output box. Giving people an idea of what to expect.

First, we select the input element which goes by the ID
passed in the inputId argument. We want to listen to all
change events that are fired.

Once a change event is fired, we set an active state to the
entire form, which means we add a class called active to
the parent element.

function displaySearch(
 inputId: string,
 outputId: string,

161Chapter 3 Functions

 search: SearchFn
): void {
 document.
 getElementById(inputId)?.
 addEventListener('change', function() {
 this.
 parentElement?.
 classList.add('active')
 })
}

The type annotations in the function header aside, we see
regular JavaScript. And TypeScript doesn’t complain about any-
thing. No red squigglies. Everything compiles as we want it.

Does anything strike you as odd about it working so seam-
lessly? No? Good! This is regular, working JavaScript code
as we would write it without TypeScript, so it’s good that
TypeScript doesn’t throw red squigglies at you.

Now let’s add some more code. After we set our form to
active, we fetch the current value from the input field, to
pass it to the search function.

function displaySearch(
 inputId: string,
 outputId: string,

162 TypeScript in 50 Lessons

 search: SearchFn
): void {
 document.
 getElementById(inputId)?.
 addEventListener('change', function() {
 this.
 parentElement?.
 classList.add('active')
 const searchTerm = this.value
 })
}

What’s that? A red squiggly? How did that happen? Well,
let’s talk about this.

Function Binding and HTML Elements

In JavaScript, regular functions are always bound to an ob-
ject. This object becomes accessible via this in these func-
tions. In our example, the callback function is bound to the
element we retrieved via getElementById. So this at this
moment is the element node, which is of type HTMLElement.

This behavior is provided by TypeScript. The purpose of
getElementById is to retrieve HTML elements. Each ele-
ment is of a certain type – you can look them up in MDN,19

19 https://smashed.by/mdn

163Chapter 3 Functions

where you see a broad range for nearly every HTML ele-
ment there is. From HTMLAnchorElement (the a element) to
HTMLVideoElement (the video element). These are interfaces
that are available in the browser.

// Creating an HTMLVideoElement by using
// the tag
const x = document.createElement('video')
console.log(x.toString())
// Prints "[object HTMLVideoElement]"
// the name of the actual browser interface

A lot of these interfaces are automatically generated by
scraping web standard documents and looking for parts
where interfaces are described in the web interface defini-
tion language (WIDL) format. The TSJS Generator20 con-
verts WIDL files to TypeScript declaration files: a wonderful
window into what’s going on in browser internals!

Those elements follow a very shallow inheritance hierarchy.
With the supertype, the lowest common denominator is
HTMLElement. And this is also the interface we access via
this in our callback function.

This is also the most concrete contract the predefined Type-
Script typings can provide for us. How should a static code
analysis tool know which element is underneath inputId?
When using methods like querySelector, the lowest com-

20 https://smashed.by/tsjs

164 TypeScript in 50 Lessons

mon denominator becomes even more generic: Element,
which wouldn’t allow us to even access parentElement.
However, if you go for an element selector – e.g. query
Selector('input') – TypeScript can provide a little help.

In our case, we have to check what subtype instance this
is. This comes with another type guard check: instanceof.

function displaySearch(
 inputId: string,
 outputId: string,
 search: SearchFn
): void {
 document.
 getElementById(inputId)?.
 addEventListener('change', function() {
 // This is of type HTMLElement because
 // getElementById says so
 this.
 parentElement?.
 classList.add('active')
 if(this instanceof HTMLInputElement) {
 // From here on, this is
 // of type HTMLInputElement
 const searchTerm = this.value // Works!
 search(searchTerm)
 .then(results => {
 // TODO in another lesson
 })
 }
 })
}

165Chapter 3 Functions

As an additional benefit, our code becomes a lot more
secure. TypeScript again points us to the things that might
cause some problems: yes, we can be sure that this is an
HTMLElement once we reach the callback, but we can never
be completely sure that it is of type HTMLInputElement.
What if IDs change in our markup? Our code would break
into pieces and throw errors. Here, we have a guard where
we can check and steer based on the outcome. Type safety in
our code leads to more robust code when shipped.

Extracting the Callback

This leaves us with one problem: what if we want to extract
the callback into its own function? This is not uncommon
when writing JavaScript; the same function might be used at
different places. But the moment we extract the function and
put it in another place, we also lose any connection to this!

function inputChangeHandler() {
 // We have no clue what this can be
 // that's why we get red squigglies
 this.
 parentElement?.
 classList.add('active')
}

166 TypeScript in 50 Lessons

function displaySearch(
 inputId: string,
 outputId: string,
 search: SearchFn
): void {
 document.
 getElementById(inputId)?.
 // Only here, inputChangeHandler's this
 // becomes of type HTMLElement again
 // but inputChangeHandler doesn't know about that
 addEventListener('change', inputChangeHandler)
}

TypeScript has a way of dealing with situations like this:
we are allowed to type this! Function declarations can
have another additional parameter, that has to be at the
very first position: this.

// We define that this is of type HTMLElement
function inputChangeHandler(this: HTMLElement) {
 this.
 parentElement?.
 classList.add('active')
}

This parameter gets erased once we compile TypeScript
down to JavaScript. Again, there are additional benefits.

167Chapter 3 Functions

We can only use inputChangeHandler wherever we can
be sure that this is going to be a (sub)type of HTMLElement.
This also ensures that we don’t call inputChangeHandler
outside with no context:

// The 'this' context of type 'void' is not assignable
// to method's 'this' of type 'HTMLElement'.
inputChangeHandler()

And again, we follow the basic principle of TypeScript: being
as easy to use as possible but adding enough type safety as
we need to make sure we don’t shoot ourselves in the foot.
TypeScript puts red squigglies where we need to be more
explicit in our thinking if we want to make sure we don’t
break once we run our program and subtle things change.

Lesson 19:
The Function Type Tool Belt
In JavaScript you won’t go far without functions. As you
have seen, function types can be very versatile, covering a lot
of use cases that come up in regular JavaScript. The mantra
is always the same: JavaScript first and just enough types to
give the compiler something to work with. In this lesson, we
will look at a couple of function scenarios where TypeScript
helps you with extra type information.

168 TypeScript in 50 Lessons

Tagged Template Literals

Among the arguably coolest features in recent JavaScript are
template literals. String concatenation always was some-
thing that felt way too tedious for a modern programming
language. With template literals it’s simply elegant:

const term = 'Ember'
const results = 12

const result text =
 `You searched for ${term}, and got ${no} results`

We can execute any expression within a string, and con-
catenate the result with the rest of the string. An extension
of template literals is tagged template literals. Syntactically
they are very similar: backtick strings with JavaScript ex-
pressions, but there’s a custom tag in front of them.

Let’s think about a highlight tag, that allows us to replace
a certain symbol within a string with some HTML ele-
ments; for example:

const result = {
 title: 'A guide to @@starthl@@Ember@@endhl@@.js',
 url: '/a-guide-to-ember',
 description: 'The framework @@starthl@@Ember@@
endhl@@.js
 in a nutshell'
}

169Chapter 3 Functions

We want to replace every @@starthl@@ with <mark> tags,
and @@endhl@@ with </mark> closing tags. The scenario
where we want to replace these strings is within the build-
ing of a results list markup: an unordered list () with
lots of list items (). The list item contains the result’s
title, but with the highlight markers replaced. To achieve
that, we create a tag called highlight, that works like that:

let markup = highlight`${result.title}`

A tag for a tagged template literal is nothing but a function
that has a defined set of parameters.

1. The first parameter is a TemplateStringsArray, an
array that contains all the strings around the expres-
sions. In our case and

2. The second is a string array with the actual expres-
sions. In our case whatever ${result.title} gives us.

It is our task to concatenate all string parts again and, wher-
ever we like, to make modifications; for example: replace all
markers with actual elements.

TypeScript provides us with respective types for that. The
type TemplateStringsArray is different from other string
arrays as it’s read-only and has a pointer to the raw array.
This mirrors the actual implementation in JavaScript.

170 TypeScript in 50 Lessons

The implementation might look something like this:

function highlight(
 strings: TemplateStringsArray,
 ...values: string[]
) {
 let str = '' // The result string
 strings.forEach((templ, i) => {
 // Fetch the expression from the same position
 // or assign an empty string
 let expr = values[i]?
 .replace('@@start@@', '')
 .replace('@@end@@', '') ?? ''
 // Merge template and expression
 str += templ + expr
 });
 return str
}

With a function head like this, TypeScript recognizes
highlight as a template tag. In use, a highlight tagged
template literal looks something like this:

function createResultTemplate(results: Result[]):
string {
 return `
 ${results.map(result =>
 highlight`${result.title}`)}
 `
}

171Chapter 3 Functions

Handy and, with the use of a specific function head, very
intentional. That’s what we want!

Rest Parameters

You just saw a very weird notation for the second string
array in highlight. What about those dots?

declare function highlight(
 strings: TemplateStringsArray,
 ...values: string[]
): string

The dots tell us that values is a rest parameter. As we
established in other lessons, functions in JavaScript can be
called with a virtually unlimited number of parameters.
The function implementation takes care of the number of
parameters that are actually used.

But what if we want to use all parameters, no matter how
many? This is where rest parameters come into play. Let’s
look at a different use of our search function:

// I want to search for a term
search('Ember')

172 TypeScript in 50 Lessons

// I want to add a tag
search('Ember', 'JavaScript')

// and a second tag
search('Ember', 'JavaScript', 'Web Development')

// and so on...
search('Ember', 'JavaScript', 'Web Development',
'Code')

// and so on...
search('Ember', 'JavaScript', 'Web Development',
 'Code', 'Guides')

We as developers see one search term, and as many tags
as we like. How do we declare types for that in TypeScript?
With arrays!

declare function
 search(term: string, ...tags: string[]):
Promise<Result[]>

Just by adding three dots, the usage of the search function
varies, while the way the search function works internally
stays exactly the same. Note that rest parameters are always

173Chapter 3 Functions

optional. So even if term and tags have the same type, you
want to carve out as many parameters as you need to make
your function work.

Asynchronous Functions

Functions that return promises are functions we can use in an
asynchronous context, which means we can await their result:

const results = await search('Ember') // Yass!

Which means that we can declare functions asynchronous.
Using the async keyword affects the function body and
the implementation. Your return values are automatically
wrapped in a promise return type:

async function search(
 query: string,
 tags?: string[]
) {
 let queryString = `?query=${query}`
 if(tags && tags.length) {
 queryString += `&tags=${tags.join()}`
 }

 // Instead of thenable promise calls
 // we await results

174 TypeScript in 50 Lessons

 const response
 = await fetch(`/search${queryString}`)
 const results = await response.json()

 // The return type becomes Promise<Result[]>
 return results as Result[]
}

Note that TypeScript supports top-level async. This means
that as long as you are in a module context, you can call
async functions as much as you like.

One important detail: when you declare an asynchronous
function type, you can’t use the async keyword. The reason
is that the function head stays exactly the same. We return
a promise of results – nothing has changed compared with
the previous version.

declare function
 search(term: string, tags?: string[]):
Promise<Result[]>

Once you declare the function type like that, you can use
this function in an asynchronous context.

175Chapter 3 Functions

Lesson 20:
Function Overloading

In the previous lesson we saw a couple of different imple-
mentations of the search function. Let’s review. First, the
traditional. It takes a term and some optional tags, and
returns a promise with results:

declare function search(
 term: string,
 tags?: string[]
): Promise<Result[]>

Second, we had a search function that takes a term, a call-
back, and optional tags as a third parameter. We don’t return
values, only void.

declare function search(
 term: string,
 callback: (result: Result[]) => void,
 tags?: string[]
): void

There might be more variations, but let’s focus on those two
for now. Those two function heads look entirely different,

176 TypeScript in 50 Lessons

except for the first parameter. They return different things,
and they take arguments in a different order, or with differ-
ent types entirely.

However, it isn’t that uncommon in JavaScript to have
functions that take differently typed arguments at differ-
ent positions. Take a look at the write function of the file
system API in Node.js.21

The second argument can be either a buffer with data or a
string that we write to a file. And there are lots of optional
parameters afterwards. The only thing that’s constant is that
the last argument is always a callback. But this callback can
be at position three, four, five, or even six!

In JavaScript, function arguments are what we make of
them. This is fundamentally different from some other
programming languages that allow for multiple functions
within the same scope. Other programming languages,
like C++, Java, or C#, call this function overloading: having
more than one implementation as long as the argument
list is different.

In JavaScript, we can only have one function with a specific
name in a specific scope. But the argument list can be as
dynamic as we need it. So functions in JavaScript can do
basically anything and everything. But how do we type this?

21 https://smashed.by/fswrite

177Chapter 3 Functions

This is where TypeScript borrows the term function overloading
from other programming languages: if your function can have
anything as arguments, you can at least write type definitions
for different use cases. Instead of having multiple implemen-
tations, you have one implementation, but more types.

In TypeScript, we define types like that by writing the func-
tion overloads on top of the actual implementation. For our
search function, we already know which types we need; we
declared them at the beginning of this lesson:

function search(
 term: string,
 tags?: string[]
): Promise<Result[]>
function search(
 term: string
 callback: (results: Result[]) => void,
 tags?: string[]
): void

After the two function declarations, we need the actual
function that implements our search function. The function
head has to be very special: the argument list has to encom-
pass all argument lists from all function overloads above.
Since most of the arguments are different, we use any or
unknown to type them.

178 TypeScript in 50 Lessons

function search(
 term: string,
 tags?: string[]
): Promise<Result[]>
function search(
 term: string,
 callback: (results: Result[]) => void,
 tags?: string[]
): void
// Here comes the implementation
function search(
 term: string,
 p2?: unknown,
 p3?: string[]
) {
 // Now for the implementation
}

The moment we define our search function like that, we get
autocompletion for the two function overloads.

Visual Studio code showing the two possible function heads for
the search function

How did we come up with the final function head?

179Chapter 3 Functions

1. The first argument, term, is the same in both function
heads. We carry over that argument.

2. The second argument, p2, can be optional tags, or a
callback. So it is definitely optional, and it can have
two types. That’s why we choose unknown for now.

3. The third argument, p3, must be optional as the second
argument can be optional. We can’t do required param-
eters after optional parameters, obviously. But once
argument three appears, it’s definitely tags from the
second function overload. Hence, string[].

We deliberately choose undescriptive names like p2 or
p3 to redefine them to their actual purpose inside the
function body. We can also name p2 something like
tagsOrCallback, and p3 to tagsAfterCallback if you
want to be more intentional.

It’s good practice to get intentional about your overloaded
arguments at the very beginning of your function body:

function search(
 term: string,
 tags?: string[]
): Promise<Result[]>
function search(
 term: string,
 callback: (results: Result[]) => void,
 tags?: string[]

180 TypeScript in 50 Lessons

): void
function search(
 term: string,
 p2?: unknown,
 p3?: string[]
) {
 // We only have a callback if 'p2' is a function
 const callback =
 typeof p2 === 'function' ? p2 : undefined

 // We have tags if p2 is defined and an array, or if p3
 // is defined and an array
 const tags =
 typeof p2 !== 'undefined' && Array.isArray(p2) ? p2 :
 typeof p3 !== 'undefined' && Array.isArray(p3) ? p3 :
 undefined;

 let queryString = `?query=${term}`

 if(tags && tags.length) {
 // tags at this point has to be an array
 queryString += `&tags=${tags.join()}`
 }

 // The actual fetching of results!
 const results = fetch(`/search${queryString}`)
 .then(response => response.json())

 // callback is either undefined or a function, as
 // seen above
 if(callback) {
 // Now it's definitely a function! So let's then()
 // the results and call the callback!

181Chapter 3 Functions

 // We don't return anything. This is equivalent to
 // void
 return void results.then(res => callback(res))
 } else {
 // Otherwise, we have to return a promise with
 // results as described in the first function
 // overload
 return results
 }
}

There’s a lot to do if you have to take care of implementing
two different function heads at once. It gets even more
complicated the more overloads you have. If possible, we
shouldn’t overload too much. As Shawn Wang22 once put it,
if it’s difficult to implement in TypeScript, it may be diffi-
cult to use without TypeScript.

Still, TypeScript will recognize the search function to be
compatible with everything that needs the promise-based
version, and everything that needs the callback variant.

Note that inside the function body we lose a lot of type
information due to p2 being unknown. We can narrow it
down to a regular function, or to an array of any. If we want
to know more about the types inside the function body, and
still satisfy the function overloads, we can be more explicit:

22 https://smashed.by/swyx

182 TypeScript in 50 Lessons

function search(
 term: string,
 tags?: string[]
): Promise<Result[]>
function search(
 term: string,
 callback: (results: Result[]) => void,
 tags?: string[]
): void
function search(
 term: string,
 p2?: string[] | ((results: Result[]) => void,
 p3?: string[]
) {
 // All from above, but with better type info
}

This construct is called a union type, where we define this
parameter as either a string array or a function that accepts
an array of results as a parameter. We are going to talk a lot
about union types in chapter 4.

Function Types with Overloads

In the previous lessons we found out that we can create
function type aliases to declare the contract in a single type.
Like SearchFn earlier on. We can do the same thing with

183Chapter 3 Functions

overloaded functions. A quick way is to get the type via
typeof search again, and it might look something like this:

type SearchOverloadFn = {
 // Function overload number 1
 (
 term: string,
 tags?: string[] | undefined
) : Promise<Result[]>;
 // Function overload number 2
 (
 term: string,
 callback: (results: Result[]) => void,
 tags?: string[] | undefined
): void;
}

We can use this function type again to type arrow functions
that react to overloads:

const searchWithOverloads: SearchOverloadFn =
 (
 term: string,
 p2?: string[] | (results: Result[]) => void,
 p3?: string[]
) => {
 // Do your magic
 }

184 TypeScript in 50 Lessons

Note that type inference is hard for multiple variations.
That’s why you have to provide the types for the parameters
in the arrow function yourself.

Lesson 21:
Generator Functions
In JavaScript, there is a special kind of function called a gen-
erator function. Generator functions can be exited and later
reentered. The idea is that such a function generates values
over the course of time, hence its name.

That sounds incredibly complicated and, truth be told, they
are. But TypeScript’s typing information can help you a lot
in developing them. And the type inference is pretty great!

There are two things to remember when working
with generators.

1. There’s an asterisk around the generator function
telling you that this is not an ordinary function.

2. There’s a new keyword: yield. It acts as a doorway
that passes results to the outside, but also allows us
to enter values for the next iteration. If you ever saw

185Chapter 3 Functions

a function as a black box, see yield as a hatch where
we can peek inside.

A very simple generator function can look like this:

// Nonsensical, but it illustrates the way they work
function *generateStuff() {
 yield 1
 yield 2
 let proceed = yield 3
 if(proceed) {
 yield 4
 }
 return 'done'
}

// In use:
const generator = generateStuff()
console.log(generator.next().value) // logs 1
console.log(generator.next().value) // logs 2
console.log(generator.next().value) // logs 3
// The door is open, we pass true through and...
console.log(generator.next(true).value) // logs 4
console.log(generator.next().value) // 'done'

yield first opens a door and returns a value. The open door
then accepts a value, passed in the next function. That’s why
we were able to pass true at step four, because the door was
open when we yielded 3, but before yielding 4.

186 TypeScript in 50 Lessons

The typings for that are already very complicated, but Type-
Script can already infer a lot. If you hover over the function,
you see that TypeScript infers the following return type:

Generator<1 | 2 | 3 | 4, string, unknown>

which means that we yield the numbers 1, 2, 3, or 4. We will
return a string eventually, and we don’t have any idea what
comes inside once we open the door. Truth be told, this genera-
tor function is probably not the most useful one, and the types
mirror that. In a more realistic example, we will see that types
for generator functions can tell us a lot if we do them right.

Polling Search

In our example we want to have a polling search. Imagine
a back end that reacts to a specific search query and then
returns results within milliseconds. The results are by no
means complete, just a few it was able to fetch from the da-
tabase. It also tells us if it’s finished with the query. We then
have the possibility to query again and get more results. We
constantly poll the back end for more.

This already sounds like a type:

187Chapter 3 Functions

type PollingResults = {
 results: Result[],
 done: boolean
};

A very simplified implementation of the polling function
can look like this. We strip away things like resetting the
search query or connecting results to a user:

async function polling(
 term: string
): Promise<PollingResults> {
 return fetch(`/pollingSearch?query=${term}`)
 .then(res => res.json())
}

The reason why we’re fetching results in batches is that we
want to show them as soon as possible, appending results
on the go:

function append(result: Result) {
 const node = document.createElement('li')
 node.innerHTML = `
 ${result.title}
 `
 document.querySelector('#results')?.append(node)
}

188 TypeScript in 50 Lessons

This is where a generator function comes in handy. We
constantly poll our back end and return results, but end the
function only if the back end tells us it’s done.

async function *getResults(term: string) {
 let state
 do {
 // state is a PollingResult
 state = await polling(term)
 // yield the current result array
 yield state.results
 } while(!state.done)
 // Nothing more to do
}

And that’s our very simple, very basic generator. Note that
for now, we only had to set the type of the input value. So
far, all the other things have been inferred. We also leveled
up the game: we’re working now with async generators.
This shouldn’t concern us too much, the async keyword
hides most complexity.

The type of the generator is as follows:

AsyncGenerator<Result[], void, unknown>

1. We yield Result[] arrays.

189Chapter 3 Functions

2. We return nothing, hence void.

3. We don’t pass anything. Unknown values come
through the door.

Now for the usage of our generator. Each generator returns
an iterator, a way to loop through values. Each call to next
returns an iterator result with a possible value, and a status
(if it’s done). So looping through our constantly fetched
results looks something like this:

// Adding an event listener, we've been there
document.getElementById('searchField')?.
 addEventListener('change', handleChange)

// The actual event handler
async function handleChange(this: HTMLElement, ev:
Event) {
 if (this instanceof HTMLInputElement) {
 // Search for a term,
 // call the generator, get an iterator
 let resultsGen = getResults(this.value);
 let next
 do {
 // Get the next iterator result
 next = await resultsGen.next()

 // The value can be a Result[] or void
 // because that's what the generator function
 // returns
 if(typeof next.value !== 'undefined') {
 next.value.map(append)

190 TypeScript in 50 Lessons

 }
 } while(!next.done) // As long as we are not done
 }
}

For this very basic iteration, where we don’t put anything
back through the yield door, we can use for await loops:

async function handleChange(this: HTMLElement, ev:
Event) {
 if (this instanceof HTMLInputElement) {
 let resultsGen = getResults(this.value);
 for await(results of resultsGen) {
 results.map(append)
 }
 }
}

Much clearer! But guess what? We want to put something
back through the yield door.

Yielding In

The great thing about having a generator function is that
we can control the output midway through. Of course, we

191Chapter 3 Functions

can wait until our back end is complete with all the search
results and sends us the done flag. Or we preemptively say
stop polling if we reach a certain amount of results we
want to show.

Thankfully, the next function allows us to pass results in. A
call if the polling should proceed would be nice, preferably
when we show more than five results. The handleChange
function is adapted quickly by introducing a counter variable.

async function handleChange(this: HTMLElement, ev:
Event) {
 if (this instanceof HTMLInputElement) {
 let resultsGen = getResults(this.value)
 let next
+ let count = 0
 do {
- next = await resultsGen.next()
+ next = await resultsGen.next(count >= 5)
 if(typeof next.value !== 'undefined') {
 next.value.map(append)
+ count += next.value.length
 }
 } while(!next.done)
 }
}

TypeScript is OK with this change as everything we can pass
in through the yield door is unknown. So we have to make
that more concrete. Let’s get back into our generator function.

192 TypeScript in 50 Lessons

async function *getResults(term: string) {
 let state
+ let stop
 do {
 state = await polling(term)
- yield state.results
+ stop = yield state.results
- } while(!state.done)
+ } while(!state.done || stop)
}

This works, but now the worst case has happened: we went
from unknown (good) to any (very bad). Let’s be more concrete.
Either let TypeScript infer it by assigning a default value:

async function *getResults(term: string) {
 let state
+ let stop = false
 do {
 state = await polling(term)
 stop = yield state.results
 } while(!state.done || stop)
}

This already changes the type to

AsyncGenerator<Result[], void, boolean>

193Chapter 3 Functions

And this makes sure that we pass the correct types. Or, we
are very explicit about our return type:

async function *getResults(
 term: string
): AsyncGenerator<Result[], void, boolean> {
 let state, stop
 do {
 state = await polling(term)
 stop = yield state.results
 // from here on, stop is boolean
 } while(state.done && stop)
}

Like so often, the choice is between casually going forward
as we code, or being very explicit about contracts by defin-
ing function heads as concretely as possible.

Recap

Functions in JavaScript are big. So too in TypeScript. In this
chapter, we’ve learned a lot about functions:

1. First, we learned about function types, return types,
and parameter types.

2. We dug into callbacks, a concept in JavaScript that
pops up everywhere. We learned that functions have

194 TypeScript in 50 Lessons

their own types, and that argument order is important,
rather than their names.

3. We learned about the concept of substitutability. Func-
tions can have a different shape than their types if the
context allows for it.

4. Sometimes when writing JavaScript, I want to shout,
“This is ridiculous!” but I never know what this
refers to. Well, thank goodness TypeScript can help
us with that! this argument types help us to prevent
errors and get more info about the object we bind
our function to.

5. We learned how TypeScript infers async function
return types and works with rest parameters.

6. Also, we saw that TypeScript needs special function
heads for tagged template literals.

7. Function overloads help us to define multiple function
types for one function, comforming to the flexibility of
JavaScript functions, but also making the complexity
of very flexible functions visible.

8. Last, but not least, we dug into a special kind of func-
tion: the ones with the asterisk, generator functions!

We also took a peek into some more advanced concepts like
union types, generics, and much more! Stuff to unravel in
the chapters to come.

195Chapter 3 Functions

Interlude: Anders Hejlsberg

To fully understand the purpose of TypeScript, it helps
to understand the work of TypeScript’s lead architect,
Anders Hejlsberg.

Anders Hejlsberg is a programming language designer
who has had a huge influence on programming languages
and their tools over the last four decades. Some people say
Anders redefined programming with every major program-
ming language he created.

Hejlsberg started out developing his version of the Pascal
programming language back in the early 1980s. He called
it Turbo Pascal, and the name alone indicates the key dif-
ference to existing dialects. Pascal had been implemented
by a lot of companies at that time, but what made Anders’
implementation so different from the rest was the focus
on developer experience.

Back in the 1980s, compiling took quite some time. Two
compiler passes were necessary to transform source code
into binary code. A subsequent linker pass assembled an ex-
ecutable that was runnable on the selected system. It could
take anything from several minutes to a few hours before
developers were able to see results. Sometimes floppy disks

196 TypeScript in 50 Lessons

had to be switched over and over again. If there was an
error, the whole process had to start again.

Enter Turbo Pascal. Hejlsberg took the Pascal programming
language and stripped it down to its most essential features.
He created a compiler that was highly optimized and incred-
ibly fast. With that, the usual compile-link-debug cycle was
reduced to mere seconds.

This allowed for something really important: the inclusion
of an integrated development environment (IDE), which
could compile on save, show errors at the source-code level
without exiting the program, and provide excellent feed-
back during development cycles to improve productivity.

This focus on excellent tooling, combined with a very rea-
sonable and inclusive licence made Turbo Pascal a smash
hit among developers. Turbo Pascal became very popular
and it’s still taught at universities as an entry-level program-
ming language. It was the first programming language I
learned when taking a programming course in high school.

In the early 1990s, Hejlsberg took the philosophy of great
developer experience and high-quality tooling to develop

197Chapter 3 Functions

Delphi, an object-oriented version of Pascal that came with
WYSIWYG editors for Windows 3.1 UIs. If you have ever
used the original WinAPI for C, you know how revolution-
ary a drag-and-drop editor for UIs was at that time.

Later he developed C#. Criticized by many as a mere Java
clone, C# took Java’s shortcomings and made them more
understandable on a language level and more usable on
an editing level.

You can see a pattern here. Anders Hejlsberg never created
the most innovative programming languages that intro-
duced revolutionary syntax or fundamentally new pro-
gramming concepts. Anders took good things from popular
languages and made them fun to use.

Hejlsberg did the same thing to JavaScript with TypeScript.
He and his team looked very closely at what JavaScript
had to offer, and also at ideas that were on the horizon for
ECMAScript (the standard behind JavaScript) and future
implementations of the language.

The idea of adding classes, modern syntax, and type defi-
nitions to JavaScript was not an entirely new concept. Lots
of ideas have already been designed in ECMAScript 4,23 the
abandoned standard that wanted too much.

23 https://smashed.by/ecmascript

198 TypeScript in 50 Lessons

New language features to TypeScript were – and are, most
of the time – something the ECMAScript community is
already discussing for JavaScript. The TypeScript team is
very much involved in language discussions for JavaScript,
and it tries to provide a safe testing ground for new features
before they hit browsers.

The type system itself, the one feature that gave TypeScript
its name and helps us get excellent tooling in editors, was
heavily inspired by a proposed type system in ECMAScript
4, as well as early implementations in ECMAScript dialects,
such as Adobe’s ActionScript (Flash veterans remember).

TypeScript is guided by the same core principles adopted by
Anders Hejlsberg for his other projects: innovate in the pro-
gramming language where necessary, and provide excellent
tooling and editor experience alongside.

199Chapter 3 Functions

Lesson 22: Modeling Data 204

Lesson 23: Moving in the Type Space 212

Lesson 24: Working With Value Types 221

Lesson 25: Dynamic Unions 232

Lesson 26: Object Types and

 Type Predicates . 239

Lesson 27: Down at the Bottom: never 246

Lesson 28: Undefined and Null 253

Union and Intersection Types

We’ve come quite far with TypeScript. We’ve
learned about the tooling aspect, type infer-
ence, and control flow analysis, and we know

how to type objects and functions effectively. With what we
have learned, we are able to write pretty complex applica-
tions and most likely will get good enough tooling out of it
to get us through our day.

But JavaScript is special. The flexibility of JavaScript that
allows for easy to use programming interfaces is, frankly,
hard to sum up in regular types. This is why TypeScript
offers a lot more.

Starting with this chapter, we’ll go deep into TypeScript’s type
system. We will learn about the set theory behind TypeScript,
and how thinking in unions and intersections will help us get
even more comprehensible and clearer type support. This is
where TypeScript’s type system really shines and starts becom-
ing much more powerful than what we know from traditional
programming languages. It’s going to be an exciting ride!

To illustrate the concepts of union and intersection types,
we’ll work on a page for tech events: meetups, conferences,
and webinars; events that are similar in nature, but distinct
enough to be treated differently.

Lesson 22: Modeling Data

Imagine a website that lists different tech events:

1. Tech conferences: people meet at a certain location
and listen to a couple of talks. Conferences usually cost
something, so they have a price.

2. Meetups: smaller in scale, meetups are similar to
conferences from a data perspective. They also happen
at a certain location with a range of talks, but compared
with tech conferences they are usually free. Well, at
least in our example they are.

3. Webinars: instead of people attending in a physical
space, webinars are online. They don’t need a location,
but a URL where people can watch the webinar in their
browser. They can have a price, but can also be free.
Compared with the other two event types, webinars
feature only one talk.

All tech events have common properties, like a date, a descrip-
tion, a maximum number of attendees, and an RSVP count.
We also have a string identifier in the property kind, where we
can distinguish between conferences, webinars, and meetups.

In our app, we’re working with that kind of data a lot. We
grab a list of tech events as JSON from a back end, and also

204 TypeScript in 50 Lessons

when we add new events to a list, or want to retrieve their
properties to display them in a UI.

To make life easier – and much less prone to errors – we
want to spend some time modeling this data as TypeScript
types. With that, we not only get proper tooling but also red
squiggly lines should we forget something.

Let’s start with the easy part. Every kind of tech event has some
sort of talk, maybe several. A talk has a title, an abstract, and
a speaker. We keep the speaker simple for now and represent
them with a simple string. The type for a talk looks like this:

type Talk = {
 title: string,
 abstract: string,
 speaker: string
}

With that in place, we can develop a type for conferences:

type Conference = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,

205Chapter 4 Union and Intersection Types

 location: string,
 price: number,
 talks: Talk[]
}

… a type for meetups, where price is a string (“free”) instead
of a number:

type Meetup = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,
 location: string,
 price: string,
 talks: Talk[]
}

… and a type for webinars, where we only have one talk, and
we don’t have a physical location but a URL to host the event:

type Webinar = {
 title: string,
 description: string
 date: Date,

206 TypeScript in 50 Lessons

 capacity: number,
 rsvp: number,
 kind: string,
 url: string,
 price?: number,
 talks: Talk
}

Also, you see that types are optional. With those four types
in place, we already modeled a good part of the possible
data we can get from the back end. And some parts have a
common shape within all three event types, and other parts
are subtly, or entirely, different.

Intersection Types

The first thing we realize is that there are lots of similar
properties; properties that also should stay the same, the
basic shape of a TechEvent. With TypeScript, we’re able to
extract that shape and combine it with properties specific to
our concrete single types.

First, let’s create a TechEventBase type that contains all the
properties that are the same in all three event types.

type TechEventBase = {

207Chapter 4 Union and Intersection Types

 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}

Then, let’s refactor the original three types to combine
TechEventBase with the specific properties of each type.

type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[]
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[]
}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk
}

208 TypeScript in 50 Lessons

We call this concept intersection types. We read the & operator
as and. We combine the properties from one type A with that
of another type B, much like extending classes. The result is a
new type with the properties of type A and type B.

The immediate benefit we get is that we can model com-
mon properties in one place, which makes updates and
changes a lot easier.

Furthermore, the actual difference between types
becomes a lot clearer and easier to read. Each subtype has
just a couple of properties we need to take care of, instead
of the full list.

Union Types

But what happens if we get a list of tech events, where each
entry can be either a webinar, or a conference, or a meetup?
Where we don’t know exactly what entries we get, only that
they are of one of the three event types.

For situations like that, we can use a concept called union
types. With union types we can model exactly the following
scenario: defining a TechEvent type that can be either a
Webinar, or a Conference, or a Meetup. Or, in code:

209Chapter 4 Union and Intersection Types

type TechEvent = Webinar | Conference | Meetup;

We read the pipe operator | as or. What we get is a new
type, a type that tries to encompass all possible properties
available from the types we set in union.

The new type can access the following properties:

• title, description, date, capacity, rsvp, kind – the
properties all three types have in common with their
original primitive type. This is what the shape of
TechEventBase gives us.

• talks. This property can be either a single Talk, or an
array Talk[]. Its new type is Talk | Talk[].

• price. The price property is also available in all three
original object types, but its own type is different.
price can be either string or number, and – following
Webinar – it can be optional. To safely work with price,
we have to do some checks within our code: we have
to check if it’s available, and then we have to do typeof
checks to see if we’re dealing with a number
or a string.

Working with price and talks might look something like this:

210 TypeScript in 50 Lessons

function printEvent(event: TechEvent) {
 if(event.price) {
 // Price exists!
 if(typeof event.price === 'number') {
 // We know that price is a number
 console.log('Price in EUR: ', event.price)
 } else {
 // We know that price is a string, so the
 // event is free!
 console.log('It is free!')
 }
 }
 if(Array.isArray(event.talks)) {
 // talks is an array
 event.talks.forEach(talk => {
 console.log(talk.title)
 })
 } else {
 // It's just a single talk
 console.log(event.talks.title)
 }

}

Does this structure remind you of something? Back in
chapter 2 we learned about the concept of control flow, and
narrowing down types with type guards. This is exactly
what’s happening here. Since the type can take on different
shapes, we can use type guards (if statements) to narrow
down the union type to its single type.

211Chapter 4 Union and Intersection Types

Please note that we are moving between the union types
of the respective properties price and talks. All other
information of the original types Webinar, Conference,
and Meetup that can’t be unified (like location and URL) are
dropped from the shape of the union. We need some more
information to narrow down to the original object shapes.

Lesson 23:
Moving in the Type Space

Before we continue, let’s quickly review what we’ve just
learned. We learned about intersection types, the way to
combine two or more types into one, much like extending
from an object type.

And we learned about union types, a way to extract the lowest
common denominator of a set of types. But why do we call
them intersection and union types?

Set Theory

To find out, we need to review what types actually are. In
his book Programming with Types, Vlad Riscutia defines a
type as follows:24

24 https://smashed.by/typingintro

212 TypeScript in 50 Lessons

A type is a classification of data that defines the
operations that can be done on that data, the
meaning of the data, and the set
of allowed values

The part we want to focus on is the “set of allowed values.”
This is something we already experienced when working
with types. Once a variable has a certain type annotation,
TypeScript only allows a specific set of values to be assigned.

Type string only allows for strings to be assigned; number
only allows for numbers to be assigned. Each type deals
with a distinct set of values. When we think further, we
can put those sets in a hierarchy. The types any and
unknown encompass the whole set of all available values.
They are known as top types as they are on the very top
of the hierarchy.

top types

unknown

number
symbol

object

string

boolean

any

Top types, including all other types

213Chapter 4 Union and Intersection Types

Primitive types such as boolean, number or string are one
level below any and unknown. They cluster the set of all avail-
able values into distinct sets of specific values: all Boolean
values, all numbers, all strings.

primitive and
complex types

Symbol

Object

-1

...

NaN

1000000

120.3
6

'Hello world'

string

...

'Smashing'

number

true

boolean

false

Primitive and complex type sets

Those sets are distinct. They don’t share any common values.
If we now build a union type string | number, we allow
for all values that are either from the set string or the set
number, which means we get a union set of possible values.

214 TypeScript in 50 Lessons

union
types

'Hello world'

-1

...

NaN

1000000

120.3
6

number

string

...

'Smashing'

A union of numbers and string

If we were to build an intersection type string & number,
we’d have an empty intersection set as they don’t share
any common values.

This is also where the term narrowing down comes from.
We want to have a narrower set of values. If our type is
any, we can do a typeof check to narrow down to a specific
set in the type space. We move from a top type down to a
narrower set of values.

Object Sets

With primitive types it’s straightforward, but it gets a lot
more fun if we consider object types. Take these two
types, for example:

215Chapter 4 Union and Intersection Types

type Name = {
 name: string
}
type Age = {
 age: number
}

Since we have a structural type system, an object like

const person = {
 name: 'Stefan Baumgartner',
 city: 'Linz'
}

is a valid value of type Person. This object

// In my midlife crisis, I don't use semicolons
// ... just like the cool kids
const midlifeCrisis = {
 age: 38,
 usesSemicolons: false
}

is a valid value of type Age. This object

const me = {
 name: 'Stefan Baumgartner',

216 TypeScript in 50 Lessons

 age: 38
}

is compatible with both Age and Name.

However, we can’t assign every value of type Age to a type
Name because the sets are distinct enough to not have any
common values. Once we define the union type Age |
Name, both midlifeCrisis and person are compatible with
the newly created type.

The set gets wider, the number of compatible values gets
bigger. But we also lose clarity.

Conversely, an intersection type Person = Age & Name
combines both sets. Now we need all properties from type
Age and type Name.

intersection
types

{ name: string } { age: number }

all objects that

have a property

{ name: string }

all objects that

have a property

{ age: number }

all objects

that have

{ name: string,

age: number }

An intersection of Name and Age

217Chapter 4 Union and Intersection Types

With that, only the variable me becomes compatible with the
newly generated type. The intersection is a subset of both
Age and Name sets – smaller, narrower, and we have to be
more explicit about our values.

Formally speaking, all values from type A
are compatible with type A | B, and all
values from type A & B are compatible
with type B.

Value Types

Let’s take this concept of narrowing and widening sets even
further. We now know that we can have all available values
and narrow them down to their primitive types. We can
narrow down the complex types, like the set of all available
objects, to smaller sets of possible objects defined on their
property keys. Can we get even smaller?

We can! We can narrow down primitive types to values. It
turns out that each specific value of a set is its own type:
a value type.

218 TypeScript in 50 Lessons

value
types

'Hello world'

'Smashing'

...

true

false

...

NaN
-1

6

120.3

1000000

And finally, value types

Let’s look at the string 'conference' for example.

let conf = 'conference'

Our variable conf is compatible with a couple of types:

let withTypeAny: any = 'conference' // OK!
let withTypeString: string = 'conference' // OK!

// But also:

let withValueType: 'conference' = 'conference'
// OK!

219Chapter 4 Union and Intersection Types

You see that the set gets narrower and narrower. Type
any selects all possible values, type string all possible
strings. But type 'conference' selects the specific string
'conference'. No other strings are compatible.

TypeScript is aware of value types when assigning
primitive values:

// Type is string, because the value can change
let conference = 'conference'

// Type is 'conference', because the value can't
// change anymore.
const conf = 'conference'

Now that we’ve narrowed down the set to value types, we
can create wider custom sets again.

Let’s get back to our tech events example. We have three differ-
ent types of tech event: conferences, webinars, and meetups.

When our back end sends along details of which kind of
events we are dealing with, we can create a custom union type:

type EventKind =
 'webinar' | 'conference' | 'meetup'

220 TypeScript in 50 Lessons

With that, we can be sure we don’t assign any values that
aren’t intended, and we rule out typos, and other mistakes.

// Cool, but not possible
let tomorrowsEvent: EventKind = 'concert'

The value sets of primitive types are technically infinite. We
would never be reasonably able to express the full spectrum
of string or number in a custom type. But we can take very
specific slices out of it when it conforms to our data.

When we are deep in TypeScript’s type
system, we do a lot of set widening and
narrowing. Moving around in sets of
possible values is key to define clear yet
flexible types that give us first-class tooling.

Lesson 24:
Working with Value Types

Let’s incorporate our new knowledge about value and union
types to our tech event data structure. In lesson 22 (at the

221Chapter 4 Union and Intersection Types

start of this chapter) we figured out a TechEventBase type
that includes all common properties of each tech event:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}

The last property of this type is called kind and it holds
information on the kind of tech event we are dealing with.
The type of kind is string at the moment, but we know that
this type can only take three distinct values:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: 'conference' | 'meetup' | 'webinar'
}

222 TypeScript in 50 Lessons

That’s already much better than the previous version. We
are more secure against wrong values and typos. This has
an immediate effect on what we can do with the combined
union type TechEvent. Let’s look at another function called
getEventTeaser:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference)`
 case 'meetup':
 return `${event.title} (Meetup)`
 case 'webinar':
 return `${event.title} (Webinar)`
 // Again: cool, but not possible
 case 'concert':
 }
}

TypeScript immediately reports an error, because the
type 'concert' is not comparable to type 'conference' |
'meetup' | ‘webinar'. Unions of value types are brilliant for
control flow analysis. We don’t run into situations that can’t
happen, because our types don’t support such situations. All
possible values of the set are taken care of.

223Chapter 4 Union and Intersection Types

Discriminated Union Types

But we can do more. Instead of putting a union of three val-
ue types at TechEventBase, we can move very distinct value
types down to the three specific tech event types. First, we
drop kind from TechEventBase:

type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
}

Then we add distinct value types to each specific tech event.

type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[],
 kind: 'conference'
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[],
 kind: 'meetup'

224 TypeScript in 50 Lessons

}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk,
 kind: 'webinar'
}

At first glance, everything stays the same. If you hover over
the event.kind property in our switch statement, you’ll
see that the type for kind is still "conference" | "meetup" |
"webinar". Since all three tech event types are combined in
one union type, TypeScript creates a proper union type for
this property, just as we would expect.

But underneath, something wonderful happens. Where
before TypeScript just knew that some properties of the big
TechEvent union type existed or didn’t exist, with a specific
value type for a property we can directly point to the sur-
rounding object type.

Let’s see what this means for the getEventTeaser function:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':

225Chapter 4 Union and Intersection Types

 // We now know that I'm in type Conference
 return `${event.title} (Conference), ` +
 // Suddenly I don't have to check for price as
 // TypeScript knows it will be there
 `priced at ${event.price} USD`
 case 'meetup':
 // We now know that we're in type Meetup
 return `${event.title} (Meetup), ` +
 // Suddenly we can say for sure that this
 // event will have a location, because the
 // type tells us
 `hosted at ${event.location}`
 case 'webinar':
 // We now know that we're in type Webinar
 return '${event.title} (Webinar), ' +
 // Suddenly we can say for sure that there will
 // be a URL
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with
that!')
 }
}

Using value types for properties works like a hook for Type-
Script to find the exact shape inside a union. Types like this
are called discriminated union types, and they’re a safe way to
move around in TypeScript’s type space.

226 TypeScript in 50 Lessons

Fixating Value Types

Discriminating unions are a wonderful tool when you want
to steer your control flow in the right direction. But it comes
with some gotchas when you rely heavily on type inference
(which you should).

Let’s define a conference object outside of what we get from
the back end.

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feel-good JS conference',
 kind: 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in mind',
 abstract: '...'
 }]
};

By our type signature, this would be a perfectly fine value of
the type TechEvent (or Conference). However, once we pass

227Chapter 4 Union and Intersection Types

this value to the function getEventTeaser, TypeScript will
hit us with red squiggly lines.

getEventTeaser(script19)

According to TypeScript, the types of script19 and
TechEvent are incompatible. The problem lies in type infer-
ence. The moment we assign this value to the script19 vari-
able, TypeScript tries to guess the correct type of each property
value, and aims for the set it can be most sure will work. As
with const objects, all properties are still variable, and inferred
types are mostly strings and numbers for simple properties.

This means the property kind in script19 will not be inferred
as 'conference' but as string. And string is a much wider
set of values than 'conference'. For this to work, we need to
tell TypeScript again that we are looking for the value type,
not for its superset of types. We have a couple of possibilities
to do that.

First, let’s do a left-hand side type annotation.

const script19: TechEvent = {
 // All the properties from before ...
}

228 TypeScript in 50 Lessons

With that, TypeScript does a type check right at the assign-
ment. This way, the value 'conference' for kind will be
seen as the annotated value type instead of the much wider
string.

Not only that, but TypeScript will also understand which
subtype of the discriminated type union we are dealing
with. If you hover over script19, you’ll see that TypeScript
will correctly understand this value as Conference.

Declared as TechEvent, understood as Conference.

But we lose some of the conveniences we get when we rely
on type inference. Most of all, we lose the ability to leverage
structural typing and work freely with objects that just
need to be compatible with types rather than explicitly be
of a certain shape.

229Chapter 4 Union and Intersection Types

For scenarios like that, we can fixate certain properties by
doing type casts. One way would be to cast the type of prop-
erty kind specifically to the value type:

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feelgood JS conference',
- kind: 'conference',
+ kind: 'conference' as 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in Mind',
 abstract: '...'
 }]
};

That will work, but we lose some type safety as we could
also cast 'meetup' as 'conference'. Suddenly, we again
don’t know which types we are dealing with, and this is
something we want to avoid.

Much better is to tell TypeScript that we want to see this
value in its const context:

230 TypeScript in 50 Lessons

const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feelgood JS conference',
- kind: 'conference',
+ kind: 'conference' as const,
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in mind',
 abstract: '...'
 }]
};

This works just like assigning a primitive value to a const
and fixate its value type.

What we get with as const

231Chapter 4 Union and Intersection Types

You can apply const context events to objects, casting all
properties to their value types, effectively creating a value
type of an entire object. As a side effect, the whole object
becomes read-only.

Lesson 25: Dynamic Unions

Consider the following function. We get a list of tech events
and want to filter them by a specific event type:

type EventKind =
 'conference' | 'webinar' | 'meetup'

function filterByKind(
 list: TechEvent[],
 kind: EventKind
): TechEvent[] {
 return list.filter(el => el.kind === kind)
}

This function takes two arguments: list, the original
event list; and kind, the kind we want to filter by. We
return a new list of tech events. We make use of two types
to improve type safety. One is TechEvent, which we used a
lot in the last lessons.

The other one is EventKind, a union of all available value
types for the property kind. With that union in place,

232 TypeScript in 50 Lessons

we are allowed to only filter by the kinds of event listed
in that union:

// A list of tech events we get from a back end
declare const eventList: TechEvent[]

filterByKind(eventList, 'conference') // OK!
filterByKind(eventList, 'webinar') // OK!
filterByKind(eventList, 'meetup') // OK!

// 'concert' is not part of EventKind
filterByKind(eventList, 'concert') // Bang!

This is a tremendous improvement for developer experi-
ence, but has some pitfalls when our data is changing.

Lookup Types

What if we get another event type to the existing list of
event types, called Hackathon? A live, in-person coding event
that might cost something but has no talks.

Let’s define the new type:

type Hackathon = TechEventBase & {
 location: string,
 price?: number,
 kind: 'hackathon'
}

233Chapter 4 Union and Intersection Types

And add Hackathon to the union of TechEvents:

type TechEvent =
 Conference | Webinar | Meetup | Hackathon

Immediately, we get a disconnect between EventKind and
TechEvent. We can’t filter by 'hackathon' even though it
should be possible.

// This should be possible
filterByKind(eventList, 'hackathon') // Error

One way to change this would be to adapt EventKind every
time we change TechEvent. But this is a lot of effort, espe-
cially with growing or changing lists of data. What if, all of a
sudden, in-person conferences are not a thing anymore?

We want to keep the changes we make to our types as min-
imal as possible. For that, we need to create a connection
between EventKind and TechEvent.

You might have noticed that object types have a similar
structure to JavaScript objects. It turns out we have similar
operators on object types as well.

234 TypeScript in 50 Lessons

Just like we can access the property of an object by indexing it,
we can access the type of a property by using the right index:

declare const event: TechEvent
// Accessing the kind property via the index
// operator
console.log(event['kind'])

// Doing the same thing on a type level
type EventKind = TechEvent['kind']
// EventKind is now
// 'conference' | 'webinar' | 'meetup' | 'hackathon'

Since the union of TechEvent already combines all possible
values of property types into unions, we don’t need to define
EventKind on our own anymore. Types like this are called
index access types or lookup types.

With lookup types we create our own system of connect-
ed types that produce red squiggly lines everywhere we
didn’t expect them, acting as a safeguard for our own,
ever-changing work.

Mapped Types

Speaking of dynamically generated types, let’s look at a
function that groups events by their kind.

235Chapter 4 Union and Intersection Types

type GroupedEvents = {
 conference: TechEvent[],
 meetup: TechEvent[],
 webinar: TechEvent[],
 hackathon: TechEvent[]
}

function groupEvents(
 events: TechEvent[]
): GroupedEvents {
 const grouped = {
 conference: [],
 meetup: [],
 webinar: [],
 hackathon: []
 };
 events.forEach(el => {
 grouped[el.kind].push(el)
 })
 return grouped
}

The function creates a map, and then stores the original
list of tech events in a new order, based on the event kind.
Again, we face a similar problem as before. The type
GroupedEvents is manually maintained. We see that we
have four different keys based on the events that we work
with, and the moment the original TechEvent union chang-
es, we would have to maintain this type as well.

236 TypeScript in 50 Lessons

Thankfully, TypeScript has a tool for situations like this.
With TypeScript we can create object types by running over
a set of value types to generate property keys, and assigning
them a specific type.

In our case, we want the keys hackathon, webinar, meetup,
and conference to be generated automatically and mapped
to a TechEvent list by running over EventKind:

type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}

We call this kind of type mapped type. Rather than hav-
ing clear property names, they use brackets to indicate a
placeholder for eventual property keys. In our example, the
property keys are generated by looping over the union type
EventKind. To visualize how this works, let’s expand the
mapped type ourselves in a couple of steps:

// 1. The original declaration
type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}

// 2. Resolving the type alias.
// We suddenly get a connection to tech event
type GroupedEvents = {

237Chapter 4 Union and Intersection Types

 [Kind in TechEvent['kind']]: TechEvent[]
}

// 3. Resolving the union
type GroupedEvents = {
 [Kind in 'webinar' | 'conference'
 | 'meetup' | 'hackathon']: TechEvent[]
}

// 4. Extrapolating keys
type GroupedEvents = {
 webinar: TechEvent[],
 conference: TechEvent[],
 meetup: TechEvent[],
 hackathon: TechEvent[],
}

Just like we get from our original type! Mapped types are
not only a convenience that allows us to write a lot less and
get the same kind of tooling. We also create an elaborate
network of connected type information that allows us to
catch errors the very moment our data changes.

The moment we add another kind of event to our list of
tech events, EventKind gets an automatic update and we
get more information for filterByKind. We also know
that we have another entry in GroupedEvents, and the
function groupEvents won’t compile because the return

238 TypeScript in 50 Lessons

value lacks a key. And we get all these benefits at no extra
cost. We just have to be clear with our types and create the
necessary connections.

Remember, type maintenance is a potential source of errors.
Dynamically updating types helps.

Lesson 26:
Object Keys and Type Predicates

Our website not only lists events of different kinds – it also
allows users to maintain lists of events they’re interested in.
For users, events can have different states:

1. Users can be watching events they’re interested in.
They can keep up to date on speaker announcements
and more.

2. Users can be actively subscribed to events, meaning
that they either plan to attend or have already paid the
fee. For that, they responded to the event.

3. Users can have attended past events. They want to keep
track of video recordings, feedback, and slides.

4. Users can have signed out of events, meaning they
were either subscribed to an event but changed their
mind, or they just don’t want to see that event in their

239Chapter 4 Union and Intersection Types

lists anymore. Our application keeps track of those
events as well.

As always, we want to model our data first. As we don’t want
to change our existing types, but want a quick way to access
all four categories, we create another object that serves as a
map to each category. The type for this object looks like this:

type UserEvents = {
 watching: TechEvent[],
 rvsp: TechEvent[],
 attended: TechEvent[],
 signedout: TechEvent[],
}

Now for some operations on this object.

keyof

We want to give users the option to filter their events. First
by category: watching, rsvp, attended, and signedout;
second – and optionally – by the kind of event: conference,
meetup, webinar, or hackathon. The function we want to
create accepts three arguments:

1. The userEventList we want to filter.

2. The category we want to select. This matches one of
the keys of the userEventList object.

240 TypeScript in 50 Lessons

3. Optionally, a string of the set EventKind that allows us
to filter even further.

The first filter operation is quite simple. We want to access
one of the lists via the index access operator; for exam-
ple, userEventList['watching']. So for the type of the
category we create a union type that includes all keys of
userEventList.

type UserEventCategory =
 'watching' | 'rsvp' | 'attended' | 'signedoff'

function filterUserEvent(
 userEventList: UserEvents,
 category: UserEventCategory,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
}

This works, but we face the same problems as we did in the
previous lesson: we’re maintaining types manually, which
is prone to errors and typos. Problems of that kind that are
hard to catch. Perhaps you didn’t notice I made a mistake
by using the value type signedoff in UserEventCategory,
which isn’t a key in UserEvents. That would be signedout.

241Chapter 4 Union and Intersection Types

We want to create types like this dynamically, and Type-
Script has an operator for that. With keyof we can get the
object keys of every type we define. And I mean every.
We can use keyof even with value types of the string
set and get all string functions. Or with an array and get
all array operators:

// 'speaker' | 'title' | 'abstract'
type TalkProperties = keyof Talk

// number | 'toString' | 'charAt' | ...
type StringKeys = keyof 'speaker'

// number | 'length' | 'pop' | 'push' | ...
type ArrayKeys = keyof []

The result is a union type of value types. We want the keys
of our UserEvents, so this is what we do:

function filterUserEvent(
 userEventList: UserEvents,
 category: keyof UserEvents,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)

242 TypeScript in 50 Lessons

 }
 return filteredList
}

The moment we update our UserEvent type, we also know
which keys we have to expect. So if we remove something,
instances where a removed key is used get red squiggly
lines. If we add another key, TypeScript will give us proper
autocomplete for it.

Type Predicates

Let’s assume that filterUserEvents is not only within
our application, but also available outside. Other developer
teams in our organisation can access the function, and they
might not use TypeScript to get their job done. For them,
we want to catch some possible errors up front, while still
retaining our type safety.

From both filter operations, the category filter is the prob-
lematic one, as it could access a key that is not available in
userEventList. To keep it type-safe for us, and more flexi-
ble to the outside, we accept that category is not a subset of
string, but the whole set of strings:

243Chapter 4 Union and Intersection Types

function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 // ... tbd
}

But before we access the category, we want to check if this
is a valid key in our list. For that, we create a helper function
called isUserEventListCategory:

function isUserEventListCategory(
 list: UserEvents,
 category: string
) {
 return Object.keys(list).includes(category)
}

and apply this check to our function:

function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 if(isUserEventListCategory(list, category)) {
 const filteredList = list[category]

244 TypeScript in 50 Lessons

 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
 }
 return list
}

This is enough safety to not crash the program if we get
input that doesn’t work for us. But TypeScript (especially in
strict mode) is not happy with that. We lose all connections
to UserEvents, and category is still a string. On a type level,
how can we be sure that we access the right properties?

This is where type predicates come in. Type predicates are a
way to add more information to control flow analysis. We
can extend the possibilities of narrowing down by telling
TypeScript that if we do a certain check, we can be sure our
variables are of a certain type:

function isUserEventListCategory(
 list: UserEvents,
 category: string
): category is keyof UserEvents { // The type
predicate
 return Object.keys(list).includes(category)
}

245Chapter 4 Union and Intersection Types

Type predicates work with functions that return a Bool-
ean. If this function evaluates to true, we can be sure that
category is a key of UserEvents. This means that in the
true branch of the if statement, TypeScript knows the type
better. We narrowed down the set of string to a smaller set
keyof UserEvents.

Lesson 27:
Down at the Bottom: never
With all that widening and narrowing of sets, even down to
single values being a type, we have to ask ourselves: can we
get even narrower?

Yes, we can. There’s one type that’s at the very bottom of
the type hierarchy. One type that is an even smaller set
than a set with one value. The type without values. The
empty set: never.

never in Control Flow Analysis

never behaves pretty much like the anti-type of any. Where-
as any accepts all values and all operations on those values,
never doesn’t accept a single value at all. It’s impossible to
assign a value and, of course, there are no operations we

246 TypeScript in 50 Lessons

can do on a type that is never. So what does a type with no
values feel like when we are working with it?

We briefly touched on this already; it was hidden in plain
sight. Let’s go back to lesson 24 and remember what we did
when writing the getEventTeaser function, now with the
Hackathon type included:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD'
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `${event.title} (Hackathon)`
 default:
 throw new Error('Not sure what to do with that!')
 }
}

This switch statement runs through all the value types
within the EventKind union type: 'conference' | 'meet-
up' | 'webinar' | 'hackathon'. With every case state-

247Chapter 4 Union and Intersection Types

ment in our switch, TypeScript knows to take one value
type away from this list. After we’ve checked for 'confer-
ence', it can’t be checked again later on.

Once this list is exhausted, we have no more values left in
our set. The list is empty. This is the default branch in our
switch statement.

But, if we checked for all values in our list, why would we
run into a default branch anyway? Wouldn’t that be errone-
ous behaviour?

Exactly! This is highly erroneous, as we indicate by throw-
ing a new error right away! Running into the default
branch can never happen. Never!

There it was, the never word. So this is what type never is all
about. It indicates the cases that aren’t supposed to happen,
telling us that we should be very careful as our variables
probably don’t contain the values we expect.

If you take the example above, enter event in the first line
of the default branch and hover over it, TypeScript will
show you exactly that.

248 TypeScript in 50 Lessons

The list is exhausted, event is never

Any operation on event, other than being part of an error
thrown, will cause compiler errors. This is a situation that
should never happen at all!

Preparing for Dynamic Updates

Right now, our getEventTeaser function deals with all en-
tries from EventKind. In the case of a value coming in that
isn’t part of the union type, we throw an error. This is great,
but only works if we handle all possible cases.

249Chapter 4 Union and Intersection Types

What if we haven’t exhausted our entire list yet? Let’s re-
move 'hackathon' for now:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), `+
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with
that!')
 }
}

In the default branch, event.kind is now 'hackathon', but
we aren’t dealing with it – we just throw an error. This is
somewhat right as we are not sure what to do with that, but it
would be a lot nicer if TypeScript alerted us that we forgot
something. We want to exhaust our entire list, after all.

For that, we want to make sure that at the end of a long
switch–case statement, or in else branches that shouldn’t
occur, the type of event is definitely never. Let’s create a

250 TypeScript in 50 Lessons

utility function that throws the error. But instead of sending
just a message, we also want to send the culprit that eventu-
ally caused that error. Clue: the type of this culprit is never.

function neverError(
 message: string,
 token: never // The culprit
) {
 return new Error(
 `${message}. ${token} should not exist`
)
}

We substitute the neverError function with the actual error
throwing in our switch–case statement:

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return '${event.title} (Webinar), ` +
 'available online at ${event.url}`
 default:
 throw neverError(
 'Not sure what to do with that',

251Chapter 4 Union and Intersection Types

 event
)
 }
}

And immediately TypeScript’s type checking powers kick in.
At this point, event could potentially be a hackathon. We’re
just not dealing with that. TypeScript gives us a red squig-
gly and tells us that we can’t pass some value to a function
that expects never.

After we add 'hackathon' to the list again, TypeScript will
compile again, and all our exhaustive checks are complete.

function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `even that: ${event.title}`
 default:
 throw neverError(

252 TypeScript in 50 Lessons

 'Not sure what to do with that',
 event // No complaints
)
 }
}

With never we get a safeguard that can be used for situa-
tions that could occur, but should never occur. Especially
when dealing with sets of values that get wider and narrow-
er as we code our applications.

never is the bottom type of all other types, and will be a
handy tool in the next chapters.

Lesson 28: undefined and null

Before we close this chapter, we have to talk about two spe-
cial value types that you will catch sooner or later in your
applications: null and undefined.

Both null and undefined denote the absence of a value.
undefined tells us that a variable or property has been
declared, but no value has been assigned. null, on the
other hand, is an empty value that can be assigned to clear a
variable or property.

253Chapter 4 Union and Intersection Types

Both values are known as bottom values, values that have
no actual value.

Douglas Crockford once said25 that there is a lot of discussion
in the programming languages community about whether
a programming language should even have bottom values.
Nobody has the opinion that there need to be two of them.

undefined and null in the Type Space

undefined and null are somewhat special in TypeScript.
Both values are regularly part of each set of types.

The type number with
undefined and null

This is because JavaScript behaves that way. The moment
we declare a variable, it is set to undefined. Programatically,
we can set variables to null or undefined. But this brings
along some problems.

25 https://smashed.by/crockford

number

-1

...

NaN

1000000

120.3
6

undefined

null

254 TypeScript in 50 Lessons

Let’s look at this simple example:

// Let's define a number variable
let age: number

// I'm getting one year older!
age = age + 1

This is valid TypeScript code. We declare a number, and add
another number value to it. The problem is that this brings
us values we would not expect.

The result of this operation is NaN, because we are adding 1
to undefined. Technically, the result is again of type number,
just not what we expected!

It can get worse. Let’s go back to our tech event example. We
want to create an HTML representation of one of our events
and append it to a list of elements. We create a function that
runs over the common properties and returns a string:

function getTeaserHTML(event: TechEvent) {
 return `<h2>${event.title}</h2>
 <p>
 ${event.description}
 </p>`
}

255Chapter 4 Union and Intersection Types

We use this function to create a list element, which we can
add to our list of events:

function getTeaserListElement(event: TechEvent) {
 const content = getTeaserHTML(event)
 const element = document.createElement('li')
 element.classList.add('teaser-card')
 element.innerHTML = content
 return element
}

A bit rough, but it does the trick. Now, let’s add this element
to a list of existing elements:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}

And here’s the problem: we have to be very sure that an
element with the ID event-list exists in our HTML. Oth-
erwise document.querySelector returns null, and append-
ing the list will break the application.

256 TypeScript in 50 Lessons

Strict null Checks

With null being part of all types, the code above is both val-
id and highly toxic. A simple change in our markup and the
whole application breaks. We need a way to make sure that
the result of document.querySelector is actually available
and not null.

Of course, we can do null checks or use the fancy “Elvis”
operator (?. also known as optional chaining26), but wouldn’t
it be great if TypeScript told us actively that we should do so?

There is a way. In your tsconfig json we can activate the op-
tion strictNullChecks (which is part of strict mode). Once
we activate this option, all nullish values are excluded from
our types.

number

null

undefined

-1

...

NaN

1000000

120.3
6

The type number with strict null checks

26 https://smashed.by/optionalchaining

257Chapter 4 Union and Intersection Types

With null and undefined not being part of the actual type
set, this piece of code will cause an error during compile time:

let age: number
age = age + 1

age is not defined after all! But strictNullChecks does not
change how document.querySelector works. The result
can still be null. But the return type of document.query
Selector is Element | null, a union type with the nullish
value! And this makes TypeScript immediately throw a red
squiggly at us:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}

list is probably null. How right TypeScript is. A quick null
check (the Elvis operator27 dancing in front of us) does the
trick and makes our code a lot safer:

function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)

27 https://smashed.by/elvis

258 TypeScript in 50 Lessons

 list?.append(element) // Optional chaining / Null
check
}

Typescript goes a little bit further even. With strict
NullChecks enabled, we not only have to check for nullish
values, we are also not allowed to assign undefined or null
to variables and properties. Both values are removed from
all types, so an assignment of that kind is forbidden.

There are situations where we need to work with either
undefined or null. To bring one (or both) values back
into the mix, we have to add them to a union; for exam-
ple, string | undefined. This makes adding nullish values
explicit, and we have to check for their existence.

type Talk = {
 title: string,
 speaker: string,
 abstract: string | undefined
}

Another way to add undefined is to make properties of an
object optional. Optional properties have to be checked for
as well, but without us maintaining too many types.

259Chapter 4 Union and Intersection Types

type Talk = {
 title: string,
 speaker: string,
 abstract?: string
}

In any case, like Douglas Crockford said, why should we
need two nullish values? If you must use one, stick with
one of them.

Recap
This chapter was all about type hierarchies, set theory, top
and bottom types, and nullish values that can break our
programs. Everything we learned in the scope of union and
intersection types is crucial to everything that’s coming
up. Once you learn how to move around in the type space,
TypeScript has so much to offer you.

1. We learned about union and intersection types, and
how we can model data that can take different shapes.

2. We also learned how union and intersection types
work within the type space. We also learned about
discriminating unions and value types.

260 TypeScript in 50 Lessons

3. We learned about const context, and found ways
to dynamically create other types through lookup
and mapped types.

4. We built our own type predicates as custom type guards.

5. The bottom type never is great for exhaustive checks
within switch or if–else statements.

6. Last, but not least, we dealt with null and undefined
and got pretty much rid of them.

One thing that is now second nature to us is widening and
narrowing types. We can go from the all-encompassing any
down to the type with no values, never. We can freely move
around in the type space for all types we know of. Now let’s
learn what to do with types whose shapes we don’t know.

261Chapter 4 Union and Intersection Types

Interlude: Tuple Types

We traversed the whole type spectrum of primitive types
and object types, but there’s one detail we’ve left out: arrays
and their subtypes. Consider this function signature:

declare function useToggleState(id: number):
 { state: boolean, updateState: () => void };

You might see something like this when you use a library
like React. It takes one parameter, a number. The name sug-
gests it’s an identifier, and it returns an object with the state
of our toggle button, and a function to update this state.

When we use this function, we want to use destructuring to
have easy access to its properties:

const { state, updateState } = useToggleState(1)

But what happens if we need to use more than one toggle
state at the same time?

const { state, updateState } = useToggleState(1)
// Those variables are already declared!
const { state, updateState } = useToggleState(2)

262 TypeScript in 50 Lessons

Object destructuring lets us go directly to the properties
of an object, declaring them as variables. We can use array
destructuring to go directly to the indices of an array, declar-
ing them as variables under an entirely new name:

const [first, updateFirst] = useToggleState(1)
const [second, updateSecond] = useToggleState(2)

Now we can use first, second and their state update meth-
ods freely in our code. Of course, we would require
useToggleState to return an array instead.

But how do we type this? We are dealing with two different
types. One is Boolean, the other one a function with no pa-
rameters and no return value. This is not your average array
with a technically endless amount of values of one type.

It’s a tuple. While an array is a list of values that can be of any
length, we know exactly how many values we get in a tuple.
Usually, we also know the type of each element in a tuple.

In TypeScript, we can define tuples. A tuple type for the
example above would be

declare function useToggleState(id: number):
 [boolean, () => void]

263Chapter 4 Union and Intersection Types

Note that we don’t define properties, just types. The order in
which the types appear is important.

Tuple types are subtypes of arrays, but they can’t be in-
ferred. If we use type inference directly on a tuple, we will
get the wider array type:

// tuple is '(string | number)[]'
let tuple = ['Stefan', 38]

As with any other value type, declaring a const context can
infer the types correctly:

// tuple is read-only [string, number]
let tuple = ['Stefan', 38] as const

But this makes tuple read-only too, so be aware. As with
any other subtype, if we declare a narrower type in
a function signature or in a type annotation, TypeScript
will check against the narrower type instead of the wider,
more general type:

function useToggleState(id: number):
 [boolean, () => void] {
 let state = false

264 TypeScript in 50 Lessons

 // ... Some magic

 // Type checks!
 return [false, () => { state = !state}]
}

Without the return type, TypeScript would assume that we
get an array of mixed Boolean and function values.

265Chapter 4 Union and Intersection Types

Lesson 29: I Don’t Know What I

 Want, but I Know How to Get It 269

Lesson 30: Generic Constraints 277

Lesson 31: Working with Keys 284

Lesson 32: Generic Mapped Types 291

Lesson 33: Mapped Type Modifiers 299

Lesson 34: Binding Generics 308

Lesson 35: Generic Type Defaults 316

Generics

In chapter 4 we learned how to move in the type space,
and how we can narrow and widen sets of types. We
get more type safety by knowing exactly what we can

expect from our software at a particular point in time.

But there are situations where we can’t say for sure what
awaits us. Situations where we have a notion of what’s com-
ing up, but some details remain shrouded in mystery. Still,
we want to get type safety and all the nice tooling features
TypeScript provides.

Generics offer us a way to prepare for the unknown. They
let us define types that describe a certain piece of the type
system where the details are filled out later. This is the land
where utility functions and utility types are born. To illus-
trate the following chapter, think of a video player portal
that features video streams of different qualities, subtitles in
different languages, and user-centric features.

Lesson 29: I Don’t Know What I
Want, but I Know How to Get It
The infamous line by the Sex Pistols perfectly describes
punk of the 1970s, toddlers during tantrums, and generics.

Consider the following data structure for a video that exists
in different formats:

type VideoFormatURLs = {
 format360p: URL,
 format480p: URL,
 format720p: URL,
 format1080p: URL
}

URL is the browser’s built-in class of URLs. We want to
provide an API where developers can load a specific format
(using declare statements for brevity):

declare const videos: VideoFormatURLs
declare function loadFormat(
 format: string

): void

To make sure the incoming format is a valid key in our data
structure, we create a utility function with a type predicate,
just like we did in the previous chapter:

function isFormatVailable(
 obj: VideoFormatURLs,
 key: string
): key is keyof VideoFormatURLs {

270 TypeScript in 50 Lessons

 return key in obj
}

The function works as intended, and in our type space we
can narrow down the set of all strings to just the keys of
VideoFormatURLs:

if(isFormatAvailable(videos, format)) {
 // format is now “format360p” | “format480p” |
 // “format720p” | “format1080p”
 // and index accessing perfectly works:
 videos[format]
}

Now, we have a similar situation for loading subtitles. This
is our subtitle data structure:

type SubtitleURLs = {
 english: URL,
 german: URL,
 french: URL
}

And this is the validation function to check if a certain key is
available in our subtitles object:

271Chapter 5 Generics

function isSubtitleAvailable(
 obj: SubtitleURLs,
 key: string
): key is keyof SubtitleURLs {
 return key in obj
}

Wait a minute. This is exactly the same function! In
JavaScript, we wouldn’t create two of them, as they serve
exactly the same purpose and even have exactly the same
implementation! But we need two implementations be-
cause we want to have type safety, don’t we?

Well, here’s a rule to live by: if we do something in Type-
Script that we wouldn’t do like that in JavaScript, we should
rethink. TypeScript was designed to provide type safety for
almost all JavaScript scenarios. Correctly typing a utility
function is definitely one of them.

Enter Generics

Let’s take a step back and define a utility function in the way
we would in JavaScript, without any types:

function isAvailable(

272 TypeScript in 50 Lessons

 obj, key
) {
 return key in obj
}

Now, we want to prepare our function for unknown types
and still give the correct answer. This is where generics
come in. Generic programming is

a style of computer programming in which
algorithms are written in terms of types to-
be-specified-later that are then instantiated
when needed for specific types provided as
parameters (Wikipedia)28

This definition includes some crucial information: instead
of working with a specific type, we work with a parameter
that is then substituted for a specific type. Type parameters
are denoted within angle brackets at function heads or class
declarations. Let’s add one to our isAvailable function.

function isAvailable<Formats>(
 obj, key
) {
 return key in obj
}

28 https://smashed.by/generic

273Chapter 5 Generics

The type Formats does not exist in our type declarations, but
is a parameter that gets substituted for a real one, like Video
FormatURLs or SubtitleURLs. However, we can use this type
parameter with regular types within our function declaration:

function isAvailable<Formats>(
 obj: Formats, key
): key is keyof Formats {
 return key in obj
}

If we want to type key – which is now implicitly any – we
would need to use a wider set of possible key types:

function isAvailable<Formats>(
 obj: Formats,
 key: string | number | symbol
): key is keyof Formats {
 return key in obj
}

This is because our generic type parameter Formats doesn’t
know it can only have string keys; it has to prepare itself for
all possible keys. In JavaScript, numbers and symbols are
all valid key types. Take an array, for instance; arrays can be
seen as objects with number keys.

274 TypeScript in 50 Lessons

Generic Annotations and
Generic Inference

Now that we’ve defined our function as a generic func-
tion, let’s use it. We have two different ways of using the
generic function. First, we can explicitly annotate the type
we want to substitute:

if(isFormatAvailable<VideoFormatURLs>(videos, format))
{
 // ...
}

Just like explicit type annotations elsewhere, TypeScript
takes this as a given and validates everything else against
this type. This means that the moment we specify Video
FormatURLs to be the substitute for the type parameter, we
have to make sure that the argument obj that we pass to the
function matches the type VideoFormatURLs.

However, it’s much more interesting and powerful when
we use type inference to substitute our type parameter.
TypeScript is capable of inferring the type parameter
from actual arguments you pass to a function, which
feels much more natural:

275Chapter 5 Generics

// An object with video formats
declare const videoFormats: VideoFormatURLs

if(isAvailable(videoFormats, format)) {
 // Inferred type 'VideoFormatURLs'
 // format is now keyof VideoFormatURLs
}
// An object with video formats
declare const subtitles: SubtitleURLs

if(isAvailable(subtitles, language)) {
 // Inferred type 'SubtitleURLs'
 // language is now keyof SubtitleURls
}

This is just writing JavaScript.

Generics in the Wild

This was our first self-written, generic function. You might
have encountered some generics already. Promise is a gener-
ic type that pops up the moment you write asynchronous
code. The argument in Promise gives you the result type:

// randomNumber returns a Promise<number>
async function randomNumber() {
 return Math.random()

}

276 TypeScript in 50 Lessons

Another one is Array. We can write array types with
an array literal:

let anArray: number[]

Or we can use the generic

let anotherArray: Array<number>

Both do the same thing. You might find it a bit more
convenient, however, to use the generic type when you
deal with union types:

let aMixedArray: Array<number | string | boolean>

When you work particularly with lots of JavaScript’s built-in
APIs or browser APIs, you will encounter generics.

Lesson 30: Generic Constraints
Our generic function is already pretty good. We can pass
anything from the wide variety of types available and can

277Chapter 5 Generics

pinpoint concrete types once we substitute. When we think
of sets, we open up a type for any; and then once we substi-
tute, we select a much narrower set.

This can lead to some undesired behavior, unfortunately.
Our isAvailable type from the last lesson works really well
with the object types we defined:

function isAvailable<FormatList>(
 obj: FormatList,
 key: string | number | symbol
): key is keyof FormatList {
 return key in obj
}

// An object with video formats
declare const videoFormats: VideoFormatURLs

if(isAvailable(videoFormats, format)) {
 // Inferred type 'VideoFormatURLs'
 // format is now keyof VideoFormatURLs
}
// An object with video formats
declare const subtitles: SubtitleURLs

if(isAvailable(subtitles, language)) {
 // Inferred type 'SubtitleURLs'
 // language is now keyof SubtitleURls
}

278 TypeScript in 50 Lessons

And also with all other object types that are available – even
ones without a concrete type declaration:

if(isAvailable({ name: 'Stefan', age: 38}, key)) {
 // key is now “name” | “age”
}

But it also works with all non-object types:

if(isAvailable('A string', 'length')) {
 // Also strings have methods,
 // like length, indexOf, ...
}

if(isAvailable(1337, aKey)) {
 // Also numbers have methods
 // aKey is now everything number has to offer
}

It also works with arrays, such that the key can be the
entire set of numbers as well as array functions like map,
forEach, and so on.

While this is cool, as it makes our types even more com-
patible, it can lead to undesired behavior if we only want to
check objects. Thankfully, TypeScript has a way to deal with
situations like this.

279Chapter 5 Generics

Defining Boundaries

As we explained initially, type parameters of generics cover
the entire set of types: therefore, any. By substituting with a
specific type, the type set gets narrower and clearer.

However, there’s the possibility to define boundaries, or
subsets of the type space. This makes generic type param-
eters a little bit narrower before they’re substituted by real
types. We get information up front if we pass an object that
shouldn’t be passed.

To define generic subsets, TypeScript uses the extends
keyword. We check if a generic type parameter extends a
specific subset of types. If we only want to pass objects, we
can extend from the type object:

function isAvailable<FormatList extends object>(
 obj: FormatList,
 key: string
): key is keyof FormatList {
 return key in obj
}

With <FormatList extends object>, we tell TypeScript
that the argument we pass needs to be at least an object. All
primitive types and even arrays are excluded.

280 TypeScript in 50 Lessons

isAvailable('A string', 'length')

Red squigglies where they are supposed to be.

Index Types

Let’s define a function that loads a file, either a video in
a specific format, or a subtitle in a specific language.
Again, we start with the raw JavaScript function (just the
head for brevity):

function loadFile(fileFormats, format) {
 // Implement
}

When we add types, we would do something similar, as
with the isAvailable function:

function loadFile<Formats extends object>(
 fileFormats: Formats,
 format: string
) {
 // You know
}

281Chapter 5 Generics

We can go even further. When you look at both our format
definitions, you’ll recognize another common feature.

type VideoFormatURLs = {
 format360p: URL,
 format480p: URL,
 format720p: URL,
 format1080p: URL
}

type SubtitleURLs = {
 english: URL,
 german: URL,
 french: URL
}

That’s right: all properties are of type URL. Another for-
mat would most likely cause an error when used with the
loadFiles function.

We would need a constraint to ensure that we only pass
compatible objects, where we don’t know the properties
themselves, but only know that every property is of type URL.

Index types, like we briefly saw in chapter 4, are perfect
for this. Below is an index type that we’ve met before, iter-

282 TypeScript in 50 Lessons

ating over a set of unions, and in this case allowing
any value for each property:

type PossibleKeys = 'meetup' | 'conference'
 'hackathon' | 'webinar'

type Groups = {
 [k in PossibleKeys]: any
}

Index types don’t define specific property keys. They just
define a set of keys they iterate over. We can also accept the
entire set of strings as keys.

type AnyObject = {
 [k: string]: any
}

Now that we accept all property keys of type string, we can
explicitly say that the type of each property needs to be URL:

type URLList = {
 [k: string]: URL
}

283Chapter 5 Generics

A perfect shape that includes VideoFormatURLs as well as
SubtitleURLs. And basically any other list of URLs! There-
fore, also a perfect constraint for our generic type parameter:

type URLList = {
 [k: string]: URL
}

function loadFile<Formats extends URLList>(
 fileFormats: Formats,
 format: string
) {
 // The real work ahead
}

With that, every object we pass that doesn’t give an object
with URLs is going to create beautiful, red, squiggly lines
in our editor.

Lesson 31: Working with Keys
We defined an object that allows for any key of type string,
as long as the type of each property is URL. With that, we
already know that we only can pass objects that have the
correct shape without the compiler complaining.

284 TypeScript in 50 Lessons

However, when we select the right format, we still can
pass every string to the function, even though the format
might not exist.

declare const videos: VideoFormatURLs

loadFile(videos, 'format4k')
 // 4K not available
 // TypeScript doesn't squiggle

Of course, we can do better.

Related Type Parameters

We only want to pass keys as the second argument that are
actually available in the object. In a non-generic world, we
would do something like this:

function loadVideoFormat(
 fileFormats: VideoFormatURLs,
 format: keyof VideoFormatURLs
) {
 // You know
}

285Chapter 5 Generics

And the same applies to generic type parameters:

type URLObject = {
 [k: string]: URL
}

function loadFile<Formats extends URLObject>(
 fileFormats: Formats,
 format: keyof Formats
) {
 // The real work ahead
}

This already gives us great tooling. Now we can only enter keys
which are part of the object we pass as the first parameter:

loadFile(video, 'format1080p') // thumbs up!

// 'format4k' is not available
loadFile(video, 'format4k')

keyof Formats, when substituted with VideoFormatURLs
yields "format360p" | "format480p" | "format720p" |
"format1080p". The format we pass for the second argu-
ment needs to be within this union type.

286 TypeScript in 50 Lessons

Let’s take a look at the function body and do a very straight-
forward implementation. We access the URL, fetch some
data from it, and return an object that tells us what format
we loaded, and if loading was successful. An actual imple-
mentation would have much more detail, but this is all we
need to see what’s happening on a type level.

As we are using the async fetch function, we are trans-
forming loadFile to be an async function as well.

async function loadFile<Formats extends URLObject>(
 fileFormats: Formats,
 format: keyof Formats
) {
 // Fetch the data
 const data = await fetch(fileFormats[format].href)
 return {
 // Return the format
 format,
 // and see if we get an OK response
 loaded: data.response === 200
 }
}

Let’s see what we get in return. Thanks to type inference,
the return type of loadFile is Promise<{ format: keyof
Formats, loaded: boolean }>. Promise is a generic type,

287Chapter 5 Generics

which shouldn’t come as any surprise by now. And the prop-
erty format in our return value is the generic type parame-
ter we defined in our function.

Let’s use our function with substitutes.

const result = await loadFile(videos, “format1080p”)

await is unwrapping the Promise<>, so we can see that the
actual return values from loadFile. result is of type {
format: "format360p" | "format480p" | "format720p"

| "format1080p", loading: boolean }. As we expect, we
get keyof VideoFormatURLs as return.

But shouldn’t we know more? We are explicitly passing
"format1080p" as second argument. We’ve already nar-
rowed down the union through usage to a single value type.
Why can’t result be of type { format: "format1080p",
loading: boolean }?

We can achieve this by adding a second type parameter to our
generic declaration, one that shows the relationship with the
first, but works as its own type once we declare it, like this:

function loadFile<
 Formats extends URLObject,

288 TypeScript in 50 Lessons

 Key extends keyof Formats
>(fileFormats: Formats, format: Key) {
 const data = await fetch(fileFormats[format].href)
 return {
 format,
 loaded: data.response === 200
 }
}

The second type parameter Key is a subtype of keyof
Formats, the first type parameter. The interesting part now
happens when we start subtituting:

loadFile(video, 'format1080p') // OK!

video is of type VideoFormatURLs. VideoFormatURLs is a
subtype of URLObject, so the type check passes and Formats
can be substituted. Now Key needs to be a subtype of keyof
Formats. "format1080p" is a subtype of keyof Formats, so
the type check passes, and Key can be substituted.

Now we’ve locked in and substituted two types:

7. Formats is VideoFormatURLs

8. Key is "format1080p"

289Chapter 5 Generics

That’s right. Now that we’ve passed a literal string, the type
parameter takes the literal, the value type, which means that
once we execute this function and look at the result, we can
be sure that result.format is "format1080p":

const result = await loadFile(videos, “format1080p”)

if(result.format !== “format1080p”) {
 // result.format is now never!
 throw new Error(“Your implementation is wrong”)
}

To make sure that we’re also implementing the right thing,
we define a return type for the loadFile function where we
expect the Key type to appear.

type URLObject = {
 [k: string]: URL
}

type Loaded<Key> = {
 format: Key,
 loaded: boolean
}

async function loadFile<
 Formats extends URLObject,
 Key extends keyof Formats
>(fileFormats: Formats, format: Key):
Promise<Loaded<Key>> {

290 TypeScript in 50 Lessons

 const data = await fetch(fileFormats[format].href)
 return {
 format,
 loaded: data.response === 200
 }
}

All wrapped in a generic Promise as we are async.

Lesson 32:
Generic Mapped Types
TypeScript has a couple of helper types that can be used for
what we did manually. They might come in handy when we
start creating advanced types. Let’s look at Record and Pick.
Both are mapped types with generics.

Pick

Pick<O, K> creates a new object with selected property
keys K of object O. It is defined as

type Pick<
 O,
 K extends keyof O

291Chapter 5 Generics

> = {
 [P in K]: O[P];
}

[P in K] runs over all value types in the union K, which is
all keys of O. O[P] is an indexed access type. It’s like indexing
an object, but retrieving a type. This allows us to define a
union of keys that are part of an original object type, and
select those keys and their types from the original object.

For example, this would be a type with all HD videos

type HD = Pick<
 VideoFormatURLs,
 'format1080p' | 'format720p'
>

// Equivalent to

type HD = {
 format1080p: URL,
 format720p: URL
}

The Pick helper type’s most obvious use is the pick utility
function available from libraries like Lodash. But it can

292 TypeScript in 50 Lessons

be helpful in other scenarios as well. We’ll look at some of
those in later chapters.

Record

Record<K, T> creates an object type where all types in T get
the type K. Like a dictionary.

It is defined as

type Record<
 K extends string | number | symbol,
 T
> = {
 [P in K]: T
}

Note that K is a subtype of string | number | symbol.
We met this trio earlier on, as they are the allowed types
for object keys.

URLObject from the previous lesson would be defined as

type URLObject = Record<string, URL>

293Chapter 5 Generics

Record is a neat shorthand if we need to create an object
type on the fly.

Mapped and Indexed Access Types

Let’s say that our video platform, while allowing for all four
kinds of video resolution to be uploaded, doesn’t require all
four of them. We require at least one format.

Modeling this situation is easily done with union types:

type Format360 = {
 format360p: URL
}

type Format480 = {
 format480p: URL
}

type Format720 = {
 format720p: URL
}

type Format1080 = {
 format1080p: URL
}

type AvailableFormats =
 Format360 | Format480 | Format720 | Format1080

294 TypeScript in 50 Lessons

const hq: AvailableFormats = {
 format720p: new URL('...'),
 format1080p: new URL('...')
} // OK!
const lofi: AvailableFormats = {
 format360p: new URL('...'),
 format480p: new URL('...')
} // OK!

With union types, we only need to fulfill the contract of one
union constituent. This makes it great if we need a minimum
of one random property set, and all others are optional.

But – you guessed it – it would require us to maintain a
second set of types. We don’t want to redefine Video
FormatURLs, as the type is necessary for certain functional-
ity in our app. We just want to have VideoFormatURLs but
split into unions. Let’s build a helper, called Split.

The goal is to create a union type. To make it easier, we start
with a concrete type and work with the substitution later.
So what do we already know?

First, we know keyof VideoFormatURLs creates a union of
all keys of VideoFormatURLs.

295Chapter 5 Generics

type Split = keyof VideoFormatURLs

// Equivalent to
type Split =
 “format360p” | “format480p” |
 “format720p” | “format1080p”

We also know that a mapped type runs over all keys and
creates a new object with those keys. The following example
creates the same type as VideoFormatURLs, but with the key
also being the value:

type Split = {
 [P in keyof VideoFormatURLs]: P
}

// Equivalent to
type Split = {
 format360p: “format360p”,
 format480p: "format480p”,
 format720p: “format720p”,
 format1080p: “format1080p”
}

Now we can access the values of this type again by using
the indexed access operator. If we access by the union of keys
of VideoFormatURLs, we get a union of the values.

296 TypeScript in 50 Lessons

type Split = {
 [P in keyof VideoFormatURLs]: P
}[keyof VideoFormatURLs]

// Equivalent to
type Split =
 “format360p” | “format480p” |
 “format720p” | “format1080p”

This looks exactly like the first step, but it’s fundamentally
different. Instead of getting the left side of an object type
– the property keys – in union, we get the right side of an
object type – the property types – in union.

So the only thing we have to do is to get the values right,
and we have the union we envisioned. Enter Record. A
Record<P, VideoFormatURLs[P] gives us an object with
the property P we get from the key union, and we’re
accessing the corresponding type from the property key.

type Split = {
 [P in keyof VideoFormatURLs]
 : Record<P, VideoFormatURLs[P]>
}[keyof VideoFormatURLs]

// Equivalent to
type Split =
 Record<”format360p”, URL> |
 Record<”format480p”, URL> |

297Chapter 5 Generics

 Record<”format720p”, URL> |
 Record<”format1080p”, URL>

// Equivalent to
type Split =
 { format360p: URL } |
 { format480p: URL } |
 { format720p: URL } |
 { format1080p: URL }

Last, but not least, let’s build a generic out of it.

type Split<Obj> = {
 [Prop in keyof Obj]: Record<Prop, Obj[P]>
}[keyof Obj]

type AvailableFormats = Split<VideoFormatURLs>

The moment we change something in VideoFormatURLs, we
update AvailableFormats as well. And TypeScript yells at
us with wonderful red squigglies if we have set a property
that doesn’t exist anymore.

298 TypeScript in 50 Lessons

Lesson 33:
Mapped Type Modifiers

Our video application allows for signed-in users. Once a
user has signed in, they can define preferences on how they
want to consume their video content. A simple type model-
ing user preferences can look like this:

type UserPreferences = {
 format: keyof VideoFormatURLs
 subtitles: {
 active: boolean,
 language: keyof SubtitleURLs
 },
 theme: 'dark' | 'light'
}

The references to VideoFormatURLs and SubtitleURLs
make sure we don’t have to maintain more types than neces-
sary. Updating one of these types adds another part to the
union of keys at format and subtitles.language.

Also, instead of allowing every string to be a valid theme, we
restrict this property to be either dark or light.

299Chapter 5 Generics

Partials

As you can read from the type UserPreferences, no property
is optional. All properties are required to produce a sound user
experience, so we don’t want to leave anything out. To ensure
all keys are set, we provide a set of default user preferences:

const defaultUP: UserPreferences = {
 format: 'format1080p',
 subtitles: {
 active: false,
 language: 'english'
 },
 theme: 'light'
}

We use a type annotation here. Usually we try to infer as
much as possible, but defaults fall into the category of main-
tained objects. defaultUP can change, and the moment we
change it we want to validate it against UserPreferences.

For our users we just store deltas. If a user changes their
preferred video format to something different, it’s only the
new format that we store.

const userPreferences = {
 format: 'format720p'
}

300 TypeScript in 50 Lessons

To get to the full set of preferences, we merge our default
preferences with the user’s preferences in a function:

function combinePreferences(defaultP, userP) {
 return { ...defaultP, ...userP }
}

Using the object spread syntax, we create an object that is a
copy of defaultP, and override or extend with all properties
from userP. The resulting object is the full user preferences,
with the delta applied.

Now, let’s add types to this function. defaultP is easy to type:

function combinePreferences(
 defaultP: UserPreferences,
 userP: unknown
) {
 return { ...defaultP, ...userP }
}

But how do we type userP? We would need a type where
every key can be optional, something like this:

type OptionalUserPreferences = {
 format?: keyof VideoFormatURLs
 subtitles?: {

301Chapter 5 Generics

 active?: boolean,
 language?: keyof SubtitleURLs
 },
 theme?: 'dark' | 'light'
}

But, of course, we don’t want to maintain that type our-
selves. Let’s create a helper type Optional that takes it for
us. This is a mapped type, where we modify the property
features so each key becomes optional:

type Optional<Obj> = {
 [Key in keyof Obj]?: Obj[Key]
}

Note the little question mark next to the mapped argument
where we iterate through all the keys. This is called a proper-
ty modifier. With that, we create a copy of the type parameter
Obj where all keys are optional.

Let’s annotate our function combinePreferences with
this helper type.

function combinePreferences(
 defaultP: UserPreferences,
 userP: Optional<UserPreferences>

302 TypeScript in 50 Lessons

) {
 return { ...defaultP, ...userP }
}

Now, we get extra autocomplete and type safety when using
combinePreferences.

// OK!
const prefs = combinePreferences(
 defaultUP,
 { format: 'format720p' }
)

// boom!
const prefs = combinePreferences(
 defaultUP,
 { format: 'format720p' }
)

Optional<Obj> is a built-in type in TypeScript called
Partial<Obj>. It also has a reversed operation Required
<Obj> which makes all keys required by removing the
optional property modifier. It is defined as:

type Required<Obj> = {
 [Key in Obj]-?: Obj[Key]

}

303Chapter 5 Generics

Readonly

One thing we want to ensure is that defaultUP cannot
be changed from other parts of our software. It should be
maintained in code, not by a side effect. From a tooling
perspective, we need a type that ensures every property is a
read-only property.

type Const<Obj> = {
 readonly [Key in Obj]: Obj[Key]
}

You see that we add a property modifier: readonly.
With that, defaultUP won’t be updated without Type-
Script complaining.

const defaultUP: Const<UserPreferences> = {
 format: 'format1080p',
 subtitles: {
 active: false,
 language: 'english'
 },
 theme: 'light'
}
defaultUP.format = 'format720p'

Const<Obj> is available in TypeScript as Readonly<Obj>. In
JavaScript we would still be allowed to modify that object.

304 TypeScript in 50 Lessons

That’s why we use Object.freeze to make sure we can’t
change anything at runtime. The return value’s type of
Object.freeze is Readonly<Obj>.

function genDefaults(obj: UserPreferences) {
 return Object.freeze(obj)
}

const defaultUP = genDefaults({
 format: 'format1080p',
 subtitles: {
 active: false,
 language: 'english'
 },
 theme: 'light'
})

// defaultUP is Readonly<UserPreferences>
defaultUP.format = 'format720p'

This causes an error in both TypeScript and JavaScript.

Deep Modifications

There’s one thing to keep in mind with Readonly and
Partial: our nested data structure. For example, this
call will cause some errors in TypeScript:

305Chapter 5 Generics

const prefs = combinePreferences(
 defaultUP,
 { subtitles: { language: 'german' } }
)

TypeScript expects us to provide the full object for
subtitles, as Partial just made the first level of properties
optional. With the kind of assignment we are doing, this is
actually expected behavior. The call above would override
our subtitles property and delete subtitles.active. We
would need to create more sophisticated assignments, and
also more sophisticated types.

A similar problem pops up when we look at our default pref-
erences. Readonly only modifies the first level of properties,
which means that this call does not cause an error in Type-
Script, whereas it breaks once it runs in the browser:

defaultUP.subtitles.language = 'german'

To make sure our types are what we expect them to be, we
need helper types that go deeper than one level. Thankfully,
TypeScript allows for recursive types. We can define a type
that references itself, and goes one level deeper. See
DeepReadonly for instance:

306 TypeScript in 50 Lessons

type DeepReadonly<Obj> = {
 readonly [Key in Obj]: DeepReadonly<Obj[Key]>
}

TypeScript knows to stop the recursion if Obj[Key]
returns a primitive or value type, or a union of primitive
or value types.

Let’s apply the new helper type to our genDefaults function
as return type:

function genDefaults(
 obj: UserPreferences
): DeepreadOnly<UserPreferences> {
 return Object.freeze(obj)
}

As Readonly is a subtype of DeepReadonly, the narrower
return type of Object.freeze is compatible with the wider
return type we defined. The same can be done for partials:

type DeepPartial<T> = {
 [P in keyof T]?: DeepPartial<T[P]>
}

But the details of the new implementation are up to you!

307Chapter 5 Generics

Lesson 34: Binding Generics

Let’s revisit combinePreferences. We spoke a lot about
what arguments we want to pass into this function, that we
haven’t had a look at what’s being returned by our operation.

function combinePreferences(
 defaultP: UserPreferences,
 userP: Partial<UserPreferences>
) {
 return { ...defaultP, ...userP }
}
const prefs = combinePreferences(
 defaultUP,
 { format: 'format720p' }
)

When we hover over prefs, we can see the outcome of what
TypeScript infers from our assignment:

const prefs: {
 format: “format360p” | “format480p” |
 “format720p” | “format1080p”;
 subtitles: {
 active: boolean;
 language: “english” |
 “german” | “french”;
 };
 theme: "dark" | "light";
}

308 TypeScript in 50 Lessons

This is the same as UserPreferences and what we expected.
With one argument being UserPreferences, and the other
being Partial<UserPreferences>, the combination of both
arguments should be the full UserPreferences type again.

Getting UserPreferences in return from combinePrefer-
ences is perfectly fine behavior and will make your app a lot
more type-safe than it was. Let’s take this as an opportunity
to explore type annotations, type inference, and generic
type binding, and see their effects.

Type Inference

Our user’s preferences are a video format of 720p and a dark
theme. The corresponding object is:

{ format: 'format720p', theme: 'dark' }

We use this literal as a literal argument for
combinePreferences.

combinePreferences(
 defaultUP,
 { format: 'format720p', theme: 'dark' }
)

309Chapter 5 Generics

The moment we pass the literal, TypeScript infers the type
of our literal to be the value type. This is because this value,
being an argument of a function, can’t change through oper-
ations. The only way we can modify this value is by editing
the source code. It’s final.

When we assign this value to a variable, things are different.

const userSettings = {
 format: 'format720p', theme: 'dark'
}

combinePreferences(
 defaultUP, userSettings
)

The moment we assign this value to userSettings, Type-
Script infers its type to the most reasonably widest type. In
our case, strings.

// typeof userSettings =
{
 format: string,
 theme: string
}

310 TypeScript in 50 Lessons

This type is much wider than what we expect in our
UserPreferences type. TypeScript will throw red squigglies
to us because we can’t take the wider string from "dark"
| "light", nor for all the formats we listed.

And TypeScript is right! There is no security against chang-
ing the value at some point to something entirely incompat-
ible. Thank you, TypeScript!

One thing we could do is add const context:

const userSettings = {
 format: 'format720p', theme: 'dark'
} as const

This protects it from change in TypeScript and narrows the
assignment down to its value type, thus being compatible
with Partial<UserPreferences> as it is a subtype. The
other thing we could do is write a type annotation.

Type Annotations

While we advocate for using as much inference as reason-
ably possible, annotations are a magical thing we can use

311Chapter 5 Generics

when our types are very narrow to not comply with prim-
itive types. Type annotations do a type check the moment
we assign a value.

const userSettings: Partial<UserPreferences> = {
 format: 'format720p', theme: 'dark'
}

With that type annotation, userSettings will always be
Partial<UserPreferences> as long as the values we assign
pass the type check. If they do, we will never get back to
their original values when using the variable further on.
This information is lost to us.

Generic Type Binding

The process of substituting a concrete type for a generic
is called binding. Let’s inspect what happens if we bind a
generic type parameter to a concrete type.

This is combinePreferences with a generic type parameter.

function combinePreferences<
 UserPref extends Partial<UserPreferences>
>(
 defaultP: UserPreferences,
 userP: UserPref
) {

312 TypeScript in 50 Lessons

 return { ...defaultP, ...userP }
}

const prefs = combinePreferences(
 defaultUP,
 { format: 'format720p', theme: 'dark' }
)

When we call combinePreferences with an annotated type
Partial<UserPreferences>, we substitute UserPref for its
supertype. We get the same behavior we had originally.

When we call combinePreferences with a literal or a vari-
able in const context, we bind the value type to UserPref.

1. { format: 'format720p', theme: 'dark' } is taken
as literal, therefore we look at the value type.

2. The value type { format: 'format720p', theme:
'dark' } is a subtype of Partial<UserPreferences>,
so it type-checks.

3. We bind UserPref to { format: 'format720p',
theme: 'dark' }, which means we now work with
the value type, instead of Partial<UserPreferences>.

UserPref has changed now, which means that our result
type has changed as well. If we hover over prefs, we get the
following type information:

313Chapter 5 Generics

const p: {
 format: “format360p” | “format480p” |
 “format720p” | “format1080p”;
 subtitles: {
 active: boolean;
 language: “english” |
 “german” | “french”;
 };
 theme: “light” | “dark”;
} & {
 format: “format720p”;
 theme: “dark”;
}

First, we learn what the operation {...defaultP, ...us-
erP} actually does. It creates a combination of two objects,
and the resulting type is an intersection. This makes sense!

We also see what UserPrefs became the moment we passed
a literal: the value type of said literal.

This intersection creates an interesting behavior. We
have a couple of union types that are now intersected
with subtypes of their sets. In such a scenario, the
narrower set always wins:

('dark' | 'light') & 'dark' // type is 'dark'

314 TypeScript in 50 Lessons

Which means we know exactly which values we get when
we work with prefs:

prefs.theme // is of type 'dark'
prefs.format // is of type 'format720p'

This makes some checks in our code easier. Be careful,
though, with too many value types. If we take the same
pattern for the default preferences and pass a const context
object to it, we might get some unwanted side effects:

function combinePreferences<
 Defaults extends UserPreferences,
 UserPref extends Partial<UserPreferences>
>(
 defaultP: Defaults,
 userP: UserPref
) {
 return { ...defaultP, ...userP }
}

const defaultUP = {
 // wW know what we have here
} as const

const prefs = combinePreferences(
 defaultUP,
 { format: 'format720p', theme: 'dark' }
)

315Chapter 5 Generics

The resulting type looks like this:

const prefs: {
 readonly format: “format1080p”;
 readonly subtitles: {
 readonly active: false;
 readonly language: “english”;
 };
 readonly theme: “light”;
} & {
 format: “format720p”;
 theme: “dark”;
}

The intersection of two distinct value types always results
in never, which means that both theme and format become
unusable to us.

Lesson 35: Generic
Type Defaults
In the last lesson of this chapter we want to show videos
inside a video element. To make it easier for ourselves and
our co-workers, we decide to abstract handling with the
DOM, and we choose to use classes for this.

The class should behave like this:

316 TypeScript in 50 Lessons

1. We can instantiate as many as we like and pass our
user preferences to it. The user preferences are impor-
tant to select the right video format URL.

2. We can attach any HTML element to it. If it’s a video
element, we load the video source directly. If it’s any oth-
er element, we use it as a wrapper for a newly created
video element. video elements are the default, though.

3. The element is not required for instantiation; we can
set it at a later stage. This means the element can be
undefined at the moment we load a video.

Let’s implement this class.

Moving to Generics

First, we create a helper type Nullable that adds undefined
in a union. This makes reading field types of classes much
easier.

type Nullable<G> = G | undefined

Next, we start with the class. We set the type of the element to
HTMLElement as this is the supertype of all HTML elements.

class Container {

317Chapter 5 Generics

 #element: Nullable<HTMLElement>;
 #prefs: UserPreferences

 // We only require the user preferences
 // to be set at instantiation
 constructor(prefs: UserPreferences) {
 this.#prefs = prefs
 }

 // We can set the element to an HTML element
 set element(value: Nullable<HTMLElement>) {
 this.#element = value
 }

 get element(): Nullable<HTMLElement> {
 return this.#element
 }

 // We load the video inside a video element.
 // If #element isn't an HTMLVideoElement, we
 // create one and append it to #element
 loadVideo(formats: VideoFormatURLs) {
 const selectedFormat =
 formats[this.#prefs.format].href
 if(this.#element instanceof HTMLVideoElement) {
 this.#element.src = selectedFormat
 } else if(this.#element) {
 const vid = document.createElement('video')
 this.#element.appendChild(vid)
 vid.src = selectedFormat
 }
 }
}

318 TypeScript in 50 Lessons

And this already works wonderfully:

const container = new Container(userPrefs)
container.element = document.createElement('video')
container.loadVideo(videos)

HTMLElement can be way too generic for some tastes. Espe-
cially when we deal with videos, we might want to work
with the video functions of HTMLVideoElement. And when
working with that, we need the right type information.

Generics can help. We can pinpoint the exact type we are
dealing with, and with type constraints we can make sure
it’s an extension of our supertype HTMLElement.

class Container<GElement extends HTMLElement> {
 #element: Nullable<GElement>;

 // ...abridged...

 set element(value: Nullable<GElement>) {
 this.#element = value
 }
 get element(): Nullable<GElement> {
 return this.#element
 }

 // ...abridged...
}

319Chapter 5 Generics

This is better, but we are not entirely happy with it yet.

Adding Defaults

As we lack a concrete element in the constructor, TypeScript
has nothing to infer to bind GElement to a concrete type. We
fall back to the supertype, HTMLElement without an explicit
generic annotation:

// container accepts any HTML element
const container
 = new Container(userPrefs)

// container accepts HTMLVideoElement
const vidcontainer
 = new Container<HTMLVideoElement>(userPrefs)

And this is bad, as our default should always be HTML
VideoElement. Other elements are the exception. This is
where generic default parameters come in. If we don’t pro-
vide a generic annotation, TypeScript will use the default
parameter as type.

class Container<
 GElement extends HTMLElement = HTMLVideoElement> {
 // ...

320 TypeScript in 50 Lessons

}

// container accepts HTMLVideoElement
const container = new Container(userPrefs)

Compared to type constraints, generic default parameters
don’t create a boundary, but a default value in case we can’t
infer or don’t annotate. If a generic default parameter exists
without a boundary, the generic can accept any. Like func-
tion default parameters, generic default parameters have to
come last in a generic definition.

Generic default parameters are extremely useful for classes
that need to bind a generic but don’t have the information at
instantiation. For all other cases, type constraints work best.

Generic Default Parameters and Type
Inference

While generic default parameters can be extremely pow-
erful, we also have to be very cautious. Take this function
that does something similar to the Container class. It
loads a video in an element, and differentiates between
the following cases:

321Chapter 5 Generics

1. If we don’t provide an element, we create a video
element

2. If we provide a video element, we load the video in
this element

3. If we provide any other element, we use this as a wrap-
per for a new video element.

The function returns the element we passed as an argu-
ment for further operations. With generic default parame-
ters we can beautifully define this behavior, and rely only
on type inference:

declare function createVid<
 GElement extends HTMLElement = HTMLVideoElement
>(
 prefs: UserPreferences,
 formats: VideoFormatURLs,
 element?: GElement
)

If we try it out, we get the following:

declare const userPrefs: UserPreferences
declare const formats: VideoFormatURLs

// a is HTMLVideoElement, the default!
const a = createVid(userPrefs, formats)

322 TypeScript in 50 Lessons

// b is HTMLDivElement
const b = createVid(
 userPrefs, formats,
 document.createElement('div'))

// c is HTMLVideoElement
const c = createVid(
 userPrefs, formats,
 document.createElement('video'))

However, this only works when we rely solely on type infer-
ence. Generics also allow us to bind the type explicitly.

const a
 = createVid<HTMLAudioElement>(userPrefs, formats)

a is of type HTMLAudioElement, even though our imple-
mentation will return an HTMLVideoElement. Also, since
we are on the type level, the implementation has no clue
that we want to have an HTMLAudioElement. That’s why we
need to be cautious when we use generic default parame-
ters. Also, we have a much better tool for cases like that, as
we will see in the next chapter.

323Chapter 5 Generics

Recap

Generics allow us to prepare for types we don’t know up
front. This allows us to design robust APIs with better type
information, and make sure that we only pass values where
our types match certain criteria.

1. With generics we made sure that we don’t have to create
more functions just to please the type system. Generics
allow us to generalize functions for broader usage.

2. Generic constraints allow us to create boundaries.
Instead of accepting anything for our generic types, we
are allowed to set some criteria, such as the existence
of certain keys or types of properties.

3. Generics also allow us to work better with object
keys. Depending on what we pass as an argument to a
function, we can infer the right keys and let TypeScript
throw red squigglies at us if we don’t provide the cor-
rect arguments.

4. Generics work extraordinarily well with mapped
types. Through maps of union keys, index access types,
and the Record helper, we are able to create a type that
allows us to split an object type into a set of unions.

5. Mapped type modifiers allow us to copy an object type,
but set all properties as optional, required, or read-only.

324 TypeScript in 50 Lessons

6. We learned a lot about binding generics. The moment
we substitute a generic type for a real one is crucial to
understand the TypeScript type system.

7. We also saw how generic classes work, and how we use
generic type defaults to make our life a little bit easier.

Working with generics is key to getting the most out of
TypeScript’s type system. Generics were designed to con-
form to the majority of real-world JavaScript scenarios, and
open doors to even better and more robust type informa-
tion. The next chapter will take us even further!

325Chapter 5 Generics

Interlude: On Names

Generics are not something entirely new to programming.
They have been around for a long time: one of the first
programming languages, Ada, introduced a generic concept
in the late 1970s.

Syntax-wise, generics as we use them today in TypeScript
are a descendant of C++ templates. This comes as no sur-
prise, as Java, JavaScript, C#, and many other languages are
heavily inspired by the way C/C++ described its programs.
For generics, TypeScript borrows the angle brackets syntax.

Even though C++ templates are much more powerful than
type substitution, the syntax has led to naming generic type
parameters mostly T, for template. Subsequent parameters
usually go either along the alphabet (U, V, W) or are P for
property, K for key, and so on.

This can result in highly unreadable types. If I give Record
<T, U> to you, with no understanding of what Record does,
you might wonder what we should expect from the types
we pass along. A Record<Obj, PropType> might be clearer:
we can pass objects and types for properties.

So even though it is common to use single letter generics, I
advise you to do better. Types should be documentation, and

326 TypeScript in 50 Lessons

that’s why we have to be as explicit as possible with generic
type parameters. This is my style guide:

1. Uppercase words, no single letters. Uppercase to differ-
entiate it from function parameters.

2. Highly abbreviated, but still readable. Obj is clearer
than O, shorter than Object. URLObj indicates it is an
object with URL properties.

3. Use prefixes to differentiate from actual types. For
example, the type Element exists in the DOM API. I
use GElement for my generic type parameter (Elem is
also an option).

4. G is a prefix for generic, but we can be clearer if we
handle keys. URLObject is an object with URLs, so UKey
is a key from this object.

It’s not a lot, but it makes generics a lot more readable.

327Chapter 5 Generics

Lesson 36: If This, Then That 332

Lesson 37: Combining Function
 Overloads and Conditional Types . . . 339

Lesson 38: Distributive Conditionals 346

Lesson 39: Filtering with never 352

Lesson 40: Composing Helper Types 359

Lesson 41: The Infer Keyword 365

Lesson 42: Working with null 372

Conditional Types

In chapter 4 we learned how to move through the type space
with union and intersection types, and how to create specific
sets of values for our data structures. In chapter 5 we gener-
alized type behavior and bound types at a later stage, making
our functions and classes flexible yet specific to defined sets.

But what if the behavior of our types is ambiguous? What if
there’s more than one answer to a generic type? Or the type
output simply “depends”? Y’know – how it is in JavaScript
all the time.

With conditional types, we get the last tool in our tool belt
to make most sense out of JavaScript code. Conditional
types allow us to validate an input type’s set, and decide on
an output type based on this condition: if–else statements,
but on a type level.

This sounds complicated. To be sure, some conditional types
can be mind-blowingly hard to understand, and their potential
is sometimes hard to grasp. But this is what we want to clear
up! Let’s make type-level arithmetic approachable and usable!

To illustrate the features of conditional types, we are going to
look at an e-commerce application that sells physical audio
media to collectors: CDs, vinyl LPs, and even cassette tapes!

Lesson 36: If This, Then That

Consider the following data structure we set up for our
e-commerce shop. We have customers, products, and orders.
Customers have an ID, a first name, and a last name.

type Customer = {
 customerId: number,
 firstName: string,
 lastName: string
}

const customer = {
 id: 1,
 firstName: ‘Stefan’,
 lastName: ‘Baumgartner’
} // = type Customer

The product has a product ID, a title, and a price.

type Product = {
 productId: number,
 title: string,
 price: number
}

const product = {
 id: 22,
 title: ‘Form Design Patterns’,
 price: 29
}

332 TypeScript in 50 Lessons

The order has an ID as well, a customer (of type Customer),
a list of products within the order, and a date.

type Order = {
 orderId: number,
 customer: Customer,
 products: Product[],
 date: Date
}

This is a much simplified but robust start for our little app.
We are implementing an administration interface for an
e-commerce application.

We want to provide a fetchOrder function, which
works as follows:

1. If we pass a customer, we get a list of orders from this
customer.

2. If we pass a product, we get a list of orders that include
this product.

3. If we pass an order ID, we just get that particular order.

Our first idea to implement this would be function overloads.

function fetchOrder(customer: Customer): Order[]
function fetchOrder(product: Product): Order[]

333Chapter 5 Conditional Types

function fetchOrder(orderId: number): Order
function fetchOrder(param: any): any {
 // Implementation to follow
}

This works well for simple cases where we’re absolutely
sure which parameters we expect:

fetchOrder(customer) // It’s Order[]
fetchOrder(2) // It’s Order

But it gets hairy when our input is ambiguous. When we
pass an argument that can be either Customer or number, the
output is a bit boring:

declare const ambiguous: Customer | number

fetchOrder(ambiguous) // It’s any

Of course, we could patch the types of the implementation
function to be a bit clearer:

function fetchOrder(customer: Customer): Order[]
function fetchOrder(product: Product): Order[]
function fetchOrder(orderId: number): Order

334 TypeScript in 50 Lessons

function fetchOrder(
 param: Customer | Product | number
): Order[] | Order {
 // Implementation to follow
}

But being explicit about all possible outcomes gets very
verbose very quickly:

function fetchOrder(customer: Customer): Order[]
function fetchOrder(product: Product): Order[]
function fetchOrder(orderId: number): Order
function fetchOrder(
 param: Customer | Product
): Order[]
function fetchOrder(
 param: Customer | number
): Order[] | Order
function fetchOrder(
 param: Product | number
): Order[] | Order
function fetchOrder(
 param: Customer | Product | number
): Order[] | Order {
 // I hope I didn’t forget anything
}

Seven overloads for three possible input types, and two pos-
sible output types. Now add another one, it’s exhausting!

335Chapter 5 Conditional Types

Enter Conditional Types

This has to be easier. We can map each input type to an
output type

• If the input type is Customer, the return type is Order[]

• If the input type is Product, the return type is Order[]

• If the input type is number, the return type is Order

If the input type is a combination of available input types, the
return types are a combination of the respective output types.

We can model this behavior with conditional types. The syn-
tax for conditional types is based on generics and is as follows:

type Conditional<T> = T extends U ? A : B

Where T is the generic type parameter. U, A, and B are other
types. We can read this statement like ternary operations in
JavaScript:

const x = (t > 0.5) ? true : false

The statement above reads that if t is bigger than 0.5, then
x is true, otherwise it’s false. We can read the conditional

336 TypeScript in 50 Lessons

type statement in the same way: if type T extends type U, the
assigned type is A, otherwise it’s B.

Let’s see how this works with the fetchOrder function.
First, we create a type for all possible inputs.

type FetchParams = number
 | Customer
 | Product;

Then, we create a generic type FetchReturn<T> with a ge-
neric constraint to FetchParams.

type FetchReturn<Param extends FetchParams> =
 Param extends Customer ? Order[] :
 Param extends Product ? Order[] : Order

The type constraint <Param extends FetchParams> already
reduces the available input types to three possible types, so
this condition is already checked. The conditional then reads:

1. If the Param type extends Customer, we expect an
Order[] array.

2. Else, if Param extends Product, we also expect an
Order[] array.

337Chapter 5 Conditional Types

3. Otherwise, when only number is left, we expect
a single Order.

In TypeScript jargon, we say the conditional type resolves
to Order[].

Let’s adapt our function to work with the new conditional type:

function fetchOrder<Param extends FetchParams>(
 param: Param
): FetchReturn<Param> {
 // Well, the implementation
}

This is all we need to get the required return types for every
combination of input types.

fetchOrder(customer) // Order[] OK!
fetchOrder(product) // Order[] OK!
fetchOrder(2) // Order[] OK!

fetchOrder(ambiguous) // Order | Order[]

declare x: any

// any is not part of `FetchParams`
fetchOrder(x)

338 TypeScript in 50 Lessons

Conditional types also work well with the idea of having a
type layer around regular JavaScript. They work only in the
type layer and can be easily erased, while still being able to
describe all possible outcomes of a function.

Lesson 37: Combining Function
Overloads and Conditional Types
In the previous lesson we stated that conditional types are
capable of describing everything that function overloads
can do, and are much more correct. While this is technically
true, there are scenarios where a healthy mix of function
overloads and conditional types create much better readabil-
ity and clearer outcomes.

One such scenario is dealing with optional arguments.
The fetchOrder function is synchronous. And as we know,
fetching something from a database or a back end most of
the time happens asynchronously.

Let’s refactor fetchOrder so it allows for asynchronous data
retrieval. The function should combine two different asyn-
chronous patterns:

1. If we pass a single argument (either number,

339Chapter 5 Conditional Types

Customer or Product), we get a promise in return with
the respective outcome (Order or Order[]).

2. We are able to pass a callback as a second argument.
This callback gets the result (Order or Order[]) as a
parameter; the function fetchOrder returns void.

This is a classical pattern that we can see in many Node.js li-
braries. Either we pass a callback, or we return a promise. The
interesting part of this example is that the second argument
is entirely optional. This means that the function shape can
be very different. Let’s look at each function head separately.

// A callback helper type
type Callback<Res> = (result: Res) => void

// Version 1. Similar to the version from
// the previous lesson, but wrapped in a promise
function fetchOrder<Par extends FetchParams>(
 inp: Par
): Promise<FetchReturn<Par>>

// Version 2. We pass a callback function that
// gets the result, and return void.
function fetchOrder<Par extends FetchParams>(
 inp: Par, fun: Callback<FetchReturn<Par>>
): void

340 TypeScript in 50 Lessons

With a function shape that is so different, it’s not sufficient
enough to do a conditional type for a simple union.

Tuple Types for Function Heads

A possible solution would be to do a conditional type for a
union of the entire set of function heads.

In JavaScript, we have the possibility to condense all func-
tion arguments into a tuple with rest parameters.

function doSomething(...rest) {
 return rest[0] + rest[1]
}

// Returns “JavaScript”
doSomething(‘Java’, ‘Script’)

This rest parameter can be typed as a tuple. Let’s type the
callback version’s arguments as a tuple:

function fetchOrder<Par extends FetchParams>(
 ...args: [Par, Callback<FetchReturn<Par>>]
): void

341Chapter 5 Conditional Types

And, let’s also type the promise version’s arguments as a tuple.

function fetchOrder<Par extends FetchParams>(
 ...args: [Par]
): Promise<FetchReturn<Par>>

We sum up the entire argument list of each function head
into separate tuple types. This means that we can create a
conditional type that selects the right output type.

// A small helper type to make it easier to
// read
type FetchCb<T extends FetchParams> =
 Callback<FetchReturn<T>>

type AsyncResult<
 FHead, Par extends FetchParams
> = FHead extends [Par, FetchCb<Par>>] ? void :
 FHead extends [Par] ? Promise<FetchReturn<T>> :
 never;

The conditional type reads as follows:
1. If the function head FHead is a subtype of tuple

FetchParams and FetchCb, then return void.

2. Otherwise, if the function head is a subtype of the
tuple FetchParams, return a promise.

342 TypeScript in 50 Lessons

3. Otherwise, never return

We can use this newly created conditional type and bind it
to our function.

function fetchOrder<
 Par extends FetchParam,
 FHead
>(...args: FHead) : AsyncResult<FHead, Par>

And this pretty much does the trick. But it also comes at
a high price:

1. Readability. Conditional types are already hard to
read. In this case, we have two nested conditional
types: the old FetchReturn, that reliably returns the
respective return type; and the new AsyncResult, that
tells us if we get void or a promise back.

2. Correctness. Somewhere along the way we might
lose binding information for our generic type parame-
ters. This means we don’t get the actual return type,
but a union of all possible return types. Making sure
we don’t lose anything requires us to bind a lot of
parameters, thus crowding our generic signatures
and generic constraints.

343Chapter 5 Conditional Types

In cases like this, it might be a better idea to still rely on
function overloads.

Function Overloads Are Fine

Rewind to our initial function description. We described
two possible versions and their outcomes. This mirrors
exactly the function overloads we would’ve done without
conditional types. So let’s see how we can implement the
whole set of possible functions:

// Version 1
function fetchOrder<Par extends FetchParams>(
 inp: Par
): Promise<FetchReturn<Par>>
// Version 2
function fetchOrder<Par extends FetchParams>(
 inp: Par, fun: Callback<FetchReturn<Par>>
): void
// The implementation!
function fetchOrder<Par extends FetchParams>(
 inp: Par, fun?: Callback<FetchReturn<Par>>
): Promise<FetchReturn<Par>> | void {
 // Fetch the result
 const res =
 fetch(`/backend?inp=${JSON.stringify(inp)}`)
 .then(res => res.json())

 // If there’s a callback, call it
 if(fun) {

344 TypeScript in 50 Lessons

 res.then(result => {
 fun(result)
 })
 } else {
 // Otherwise return the result promise
 return res
 }
}

If we look closely, we see that we don’t leave conditional
types completely. The way we treat the FetchReturn type
is still a conditional type, based on the FetchParams union
type. The variety of inputs and outputs was nicely con-
densed into a single type.

However, the complexity of different function heads was
better suited to function overloads. The input and output be-
havior is clear and easy to understand, and the function shape
is different enough to qualify for being defined explicitly. As a
rule of thumb for your functions:

1. If your input arguments rely on union types, and you
need to select a respective return type, then a condi-
tional type is the way to go.

2. If the function shape is different (e.g. optional argu-
ments), and the relationship between input arguments

345Chapter 5 Conditional Types

and output types is easy to follow, a function overload

will do the trick.

Lesson 38: Distributive
Conditionals

Before we continue into the realms of conditional types
with more examples, let’s hang out with the one conditional
type we just wrote.

type FetchParams = number
 | Customer
 | Product

type FetchReturn<Param extends FetchParams> =
 Param extends Customer ? Order[] :
 Param extends Product ? Order[] : Order

Remember the metaphor from the previous chapter: gener-
ics work like functions, have parameters, and return output.
With that in mind, we can see how this conditional type
works when we put in one type as argument.

Let’s bind Param to Customer:

type FetchByCustomer = FetchReturn<Customer>

346 TypeScript in 50 Lessons

Substitute with the conditional’s definition:

type FetchByCustomer =
 Customer extends Customer ? Order[] :
 Customer extends Product ? Order[] : Order

Run through the conditions and get to a result.

type FetchByCustomer = Order[]

We can run through the same process with all other com-
patible types.

Distribution over Unions

It gets a little different once we pass union types. In most
cases, conditional types are distributed over unions during
instantiation. Let’s see how this works in practice.

First, we instantiate FetchParam with a union of Product
and number.

type FetchByProductOrId =
 FetchReturn<Product | number>

347Chapter 5 Conditional Types

FetchReturn is a distributive conditional type. This means
that each constituent of the generic type parameter is instan-
tiated with the same conditional type. In short: a conditional
type of a union type is like a union of conditional types.

type FetchByProductOrId =
 (
 Product extends Customer ? Order[] :
 Product extends Product ? Order[] : Order
) |
 (
 number extends Customer ? Order[] :
 number extends Product ? Order[] : Order
)

Again, we run through the conditions to get a result.

type FetchByProductOrId = Order[] | Order

And this is our expected result!

Knowing that TypeScript’s conditional types work through
distribution is incredibly important for a couple of reasons.

1. We can track each input type to exactly one output
type, no matter in which combination they occur.

348 TypeScript in 50 Lessons

2. This means that in a scenario like ours, where we want
to have different return types for different input types,
we can be sure we don’t forget a combination. The
possible combinations of return types is exactly the
possible combinations of input types.

Even though the possible combinations are the same, return
type unions remove duplicates and impossible results. This
means that if we do a distribution over all possible input
types, we get two output types in the result:

type FetchByProductOrId =
 FetchReturn<Product | Customer | number>

// Equal to

type FetchByProductOrId =
 (
 Product extends Customer ? Order[] :
 Product extends Product ? Order[] : Order
) |
 (
 Customer extends Customer ? Order[] :
 Customer extends Product ? Order[] : Order
) |
 (
 number extends Customer ? Order[] :
 number extends Product ? Order[] : Order
)

349Chapter 5 Conditional Types

// Equal to

type FetchByProductOrId =
 Order[] | Order[] | Order

// Removed redundancies

type FetchByProductOrId =
 Order[] | Order

This is a feature that will be important later in this chapter.

Naked Types

An important precondition to distributive conditional types
is that the generic type parameter is a naked type. Naked
type is type system jargon and means that the type parame-
ter is present as is, without being part of any other construct.

Being naked is the most common case for generic type pa-
rameters. The non-naked version can lead to interesting side
effects. Let’s wrap the type parameter in a tuple type.

type FetchReturn<Param extends FetchParams> =
 [Param] extends [Customer] ? Order[] :
 [Param] extends [Product] ? Order[] : Order

350 TypeScript in 50 Lessons

For single type bindings, the conditional type works as before:

type FetchByCustomer = FetchReturn<Customer>

type FetchByCustomer =
 // This condition is still true!
 [Customer] extends [Customer] ? Order[] :
 [Customer] extends [Product] ? Order[] : Order

type FetchByCustomer = Order[]

The tuple [Param] when instantiated with Customer is still a
subtype of the tuple [Customer], so this condition still resolves
to Order[]. When we instantiate Param with a union type, and
this doesn’t get distributed, we get the following result:

type FetchByCustomerOrId
 = FetchReturn<Customer | number >

type FetchByProductOrId =
 // This is false!
 [Customer | number] extends [Customer] ? Order[] :
 // This is obviously also false
 [Customer | number] extends [Product] ? Order[] :
 // So we resolve to this
 Order

type FetchByProductOrId = Order // Gasp!

351Chapter 5 Conditional Types

[Customer | number], being a wider type, is a supertype of
[Customer] and therefore doesn’t extend [Customer]. No
condition applies, and our conditional type falls through to
the last option, Order. And this is a false result.

To make this conditional type a lot safer and more correct, we
can add another condition to it where we check for the sub-
type of number. The last conditional branch resolves to never.

type FetchReturn<Param extends FetchParams> =
 [Param] extends [Customer] ? Order[] :
 [Param] extends [Product] ? Order[] :
 [Param] extends [number] ? Order : never

This ensures we definitely get the correct return value if
we work with a single type. Union types always resolve to
never, which can be a nice way of making sure that we first
narrow down to a single constituent of the union.

Lesson 39: Filtering with never
The distributive property of conditional types allows for
some interesting use cases when combined with never.
It’s possible to create useful filter types as building blocks
for advanced, self-maintaining types in our applications.
Remember the ultimate goal: we want to model data and
behavior but never maintain our types beyond the model.

352 TypeScript in 50 Lessons

The Model

Our e-commerce application gets another feature. We want
to create CDs and LPs with a createMedium function. This is
how our model looks.

The type Medium contains our base properties:

type Medium = {
 id: number,
 title: string,
 artist: string,
}

TrackInfo stores the number of tracks and the total duration.

type TrackInfo = {
 duration: number,
 tracks: number
}

A CD is a combination of Medium and TrackInfo. We also add
a kind to create discriminated unions.

type CD = Medium & TrackInfo & {
 kind: ‘cd’
}

353Chapter 5 Conditional Types

An LP is also derived from the base Medium class. It contains
two sides which each store TrackInfo:

type LP = Medium & {
 sides: {
 a: TrackInfo,
 b: TrackInfo
 },
 kind: ‘lp’
}

We combine all possible media in an AllMedia union type.
We also define a union of media keys.

type AllMedia = CD | LP
type MediaKinds = AllMedia[‘kind’] // ‘lp’ | ‘cd’

These are our types. The function createMedium should
work as follows:

1. The first argument is the type we want to create, either
an LP or a CD.

2. The second argument is all the missing info we need
to successfully create this medium. We don’t need the
properties type, which we defined in our first argument,
nor the ID, as this will be generated by the function.

354 TypeScript in 50 Lessons

3. The function returns the newly created medium.

On to the implementation.

Select Branches of Unions

The bare minimum of the function head defines two types
for the arguments and AllMedia for the return type. Alter-
natively, this can be Medium to point to the base type.

declare function createMedium(kind, info): AllMedia

The first type we can define is which kind we want to select.
It has to be of type MediaKinds.

declare function createMedium(
 kind: MediaKinds, info
): AllMedia

We use a generic to bind the actual value type if we use a
literal.

declare function createMedium<
 Kin extends MediaKinds

355Chapter 5 Conditional Types

>(
 kind: Kin, info
): AllMedia

Now that we know which kind of medium we want to
create, we can focus on the expected output. AllMedia is
definitely too wide, but how can we select a certain branch
in our union?

Remember that conditional types are distributed over union
types, meaning that a conditional of unions is like a union
of conditionals. We can use this behavior to create a con-
ditional type that checks if each constituent of a union is a
subtype of the kind we are filtering for. If so, we return the
constituent. If not, we return never.

type SelectBranch<Brnch, Kin> =
 Brnch extends { kind: Kin } ? Brnch : never

Note the naked type Brnch! Let’s see what happens if we run
AllMedia through it, and select the branch for cd.

// We create a type where we want to select the
// cd branch of the AllMedia Union
type SelectCD = SelectBranch<AllMedia, ‘cd’>

356 TypeScript in 50 Lessons

// This equals
type SelectCD = SelectBranch<CD | LP, ‘cd’>

// A conditional of unions is like a union of
// conditionals
type SelectCD =
 SelectBranch<CD, ‘cd’> |
 SelectBranch<LP, ‘cd’>

// Substitute for the implementation
type SelectCD =
 (CD extends { kind: ‘cd’ } ? CD : never) |
 (LP extends { kind: ‘cd’ } ? LP : never)

// Evaluate!
type SelectCD =
 // This is true! Awesome! Let’s return CD
 (CD extends { kind: ‘cd’ } ? CD : never) |
 // This is false. let’s return never
 (LP extends { kind: ‘cd’ } ? LP : never)

// Equal to
type SelectCD = CD | never

We end with a union of CD | never. Again, for each con-
stituent of a union we get a proper type. However, never is
the impossible type. As it says in the name, this can never
happen! That’s why TypeScript removes everything that
resolves to never from the union, if there are other constitu-
ents available. So SelectBranch<AllMedia, ‘cd’> resolves
to CD eventually.

357Chapter 5 Conditional Types

Let’s update our return type.

declare function createMedium<
 Kin extends MediaKinds
>(
 kind: Kin, info
): SelectBranch<AllMedia, Kin>

By binding Kin to the value type, we get the correct branch
of our union type. Handy! Also, if you use the pattern of
adding a kind property to create discriminated unions a lot,
the SelectBranch type becomes a reusable helper type in
your arsenal of types.

Extract

A much more generic type is the built-in helper type
Extract<A, B>. Extract<A, B> is defined as.

type Extract<A, B> = A extends B ? A : never

The documentation says that it extracts from A those
types that are assignable to B. This can be a set of keys, or
(in our case) objects.

358 TypeScript in 50 Lessons

// Resolves to LP
type SelectLP = Extract<AllMedia, { kind: ‘lp’ }>

The moment we add another medium to the union type
AllMedia, all our types are updated automatically. We have
new kinds we can pass to createMedium, but also know that
we’re getting another medium back. No maintenance from
our side. We just add something to the model.

Lesson 40:
Composing Helper Types
A quick look back to the previous lesson. This is how far we got:

declare function createMedium<
 Kin extends MediaKinds
>(
 kind: Kin, info
): SelectBranch<AllMedia, Kin>

We select a certain kind, and know which return type to expect.

createMedium(‘lp’, { /* tbd */ }) // Returns LP!
createMedium(‘cd’, { /* tbd */ }) // Returns CD!

359Chapter 5 Conditional Types

Now we want to focus on the missing information. Remem-
ber, we want to add everything that’s necessary to create a
full medium, except for id, which is autogenerated by
createMedium, or kind, which we already defined.

Exclude

This means we need to pass objects that look like this:

type CDInfo = {
 title: string,
 description: string,
 tracks: number,
 duration: number
}

type LPInfo = {
 title: string,
 description: string,
 sides: {
 a: {
 tracks: number,
 duration: number
 },
 b: {
 tracks: number,
 duration: number
 }
 }
}

360 TypeScript in 50 Lessons

But we don’t want those types to be maintained – we want
to have them autogenerated.

The first thing we want to take care of is knowing which
keys of our object we actually need. The best way to do this
is by knowing which keys we don’t need: kind and id.

type Removable = ‘kind’ | ‘id’

Good. Now we need to filter all property keys that are not in
this set of keys. For that, we create another distributive con-
ditional type. It looks very similar to Extract, but resolves
differently.

type Remove<A, B> = A extends B ? never : A

It reads that if the type A is part of B, remove it (never); oth-
erwise keep it. Let’s see what happens if we use all keys of
CD and distribute the union over the Remove type. Remem-
ber, a conditional of a union is like a union of conditionals.

// First our keys
type CDKeys = keyof CD
// Equal to
type CDKeys = ‘id’ | ‘description’ |
 ‘title’ | ‘kind’ | ‘tracks’ | ‘duration’

361Chapter 5 Conditional Types

// Now for the keys we actually want
type CDInfoKeys = Remove<CDKeys, Removable>

// Equal to
type CDInfoKeys =
 Remove<’id’ | ‘description’ | ‘title’ |
 ‘kind’ | ‘tracks’ | ‘duration’, ‘id’ | ‘kind’>

// A conditional of a union
// is a union of conditionals
type CDInfoKeys =
 Remove<’id’, ‘id’ | ‘kind’> |
 Remove<’description’, ‘id’ | ‘kind’> |
 Remove<’title’, ‘id’ | ‘kind’> |
 Remove<’kind’, ‘id’ | ‘kind’> |
 Remove<’tracks’, ‘id’ | ‘kind’> |
 Remove<’duration’, ‘id’ | ‘kind’>

// Substitute
type CDInfoKeys =
 (‘id’ extends ‘id’ | ‘kind’ ?
 never : ‘id’) |
 (‘description’ extends ‘id’ | ‘kind’
 ? never : ‘description’) |
 (‘title’ extends ‘id’ | ‘kind’
 ? never : ‘title’) |
 (‘kind’ extends ‘id’ | ‘kind’ ? never : ‘kind’) |
 (‘tracks’ extends ‘id’ | ‘kind’ ? never : ‘tracks’) |
 (‘duration’ extends ‘id’ | ‘kind’ ? never :
‘duration’)

// Evaluate
type CDInfoKeys =

362 TypeScript in 50 Lessons

 never | ‘description’ | ‘title’ | never |
 ‘tracks’ | ‘duration’

// Remove impossible types from the union
type CDInfoKeys =
 ‘description’ | ‘title’ | ‘tracks’ | ‘duration’

Wow, what a process! But we get one step closer to the re-
sult we expect. The Remove type is built-in to TypeScript and
called Exclude. The definition is exactly the same, and it’s
description says that it excludes types from A which are in B.
This is what just happened.

Omit

We now have to take this new set of keys – a subset of the
original set of keys – and create an object type with the new
keys, which need to be of the type of the original object.

This sounds a lot like a mapped type, doesn’t it? Remember
Pick? Pick runs over a set of keys and selects the type from the
original property type. This is exactly what we’re looking for.

type CDInfo = Pick<
 CD,
 Exclude<keyof CD, ‘kind’ | ‘id’>
>

363Chapter 5 Conditional Types

How do we read this new type? We pick from CD all keys of CD,
but exclude kind and id. The result is the type we originally
envisioned. Once again, generic types behave like functions.
They have parameters and an output, and are composable.

Reading this type might feel like a little tongue twister.
That’s why TypeScript has a built-in type for exactly this
combination of Pick and Exclude, called Omit.

type CDInfo = Omit<CD, ‘kind’ | ‘id’>

We’ve come a long way with our types. The last step is to
compose everything in our createMedium function. To suc-
cessfully omit kind and id from our medium types, we need
to pass the selected branch to Omit. Another helper type
makes this a bit more readable.

type RemovableKeys = ‘kind’ | ‘id’
type GetInfo<Med> = Omit<Med, RemovableKeys>

declare function createMedium<
 Kin extends MediaKinds
>(
 kind: Kin,
 info: GetInfo<SelectedBranch<AllMedia, Kin>>
): SelectBranch<AllMedia, Kin>

364 TypeScript in 50 Lessons

And that’s it! Now TypeScript prompts us only for the prop-
erties that are missing. We don’t have to specify redundant
information, and we get autocomplete and type safety when
using our createMedium function.

A Set of Helper Types

Being able to compose generics and distributive conditional
types allows for a set of smaller, single-purpose helper types
that can be assembled for different scenarios. This allows
us to define type behavior without maintaining too many
types. Focus on the model, describe behavior with helpers.

Lesson 41: The infer Keyword
When working efficiently with TypeScript, we want to keep
type maintenance as low as possible. Types should help us
be productive, after all, and not stand in the way of what
we’re trying to achieve.

Up until now we’ve stuck to a clear workflow: model data,
describe behavior. We don’t want too much time spent on
type maintenance if we can create types dynamically from
other types. There are times, however, when we are not sure
how our model will look. Especially during development,

365Chapter 5 Conditional Types

things can change. Data can be added and removed, and
the overall shape of an object is in flux. This is OK. It’s the
flexibility JavaScript is known for!

Think of extending our e-commerce admin application
with a function that creates users who are allowed to read
and modify orders, products, and customers. The function
might look something like this:

// A userId variable counting up... not safe
// but we are in development mode
let userId = 0

function createUser(name, roles) {
 return {
 userId: userId++,
 name,
 roles,
 createdAt: new Date()
 }
}

Pretty straightforward: two generated properties, and the oth-
ers are just added to the object. Notice the absence of types!
Later on, our function might get more concrete. The roles
are divided between

• admin: allowed to read and modify everything.

• maintenance: allowed to modify products.

366 TypeScript in 50 Lessons

• shipping: allowed to read orders to get the necessary
info to dispatch them.

function createUser(
 name: string,
 role: ‘admin’ | ‘maintenance’ | ‘shipping’,
 isActive: boolean
) {
 return {
 userId: userId++,
 name,
 role,
 isActive,
 createdAt: new Date()
 }
}

But this is just another mutation. Input types get more con-
crete, and the return type adapts to the changes. We would
always have to maintain a type User if we want to continue
to work with users in a type-safe environment.

Infer the Return Type

It would help a lot if we could name the type that gets re-
turned by createUser. TypeScript can infer types through
assignments. The variable’s type takes on the shape of
what’s returned by the function.

367Chapter 5 Conditional Types

// The type of user is the shape returned by
createuser
const user = createUser(‘Stefan’, ‘shipping’, true)

We can put a name on this with the typeof operator:

/*
type User = {
 userId: number,
 name: string,
 role: ‘admin’ | ‘maintenace’ | ‘shipping’,
 isActive: boolean,
 createdAt: Date
}
*/
type User = typeof user

This gets us the User type but at a very high price. We al-
ways have to call the function to obtain the shape of the re-
turn type. What if this function call performs a critical data
mutation, in a database, for example? Are database transac-
tions justifiable only to retrieve the type of an object?

What we want is to retrieve the return type from the function
signature. For situations like that, TypeScript allows us to in-
fer type variables in the extends clause of a conditional type.

368 TypeScript in 50 Lessons

Let’s create a GetReturn type that takes a function. Any
function. For now, we want to check if the passed type is
a valid function.

type GetReturn<Fun> =
 Fun extends (...args: any[]) => any ? Fun : never

We combine all possible arguments into an argument tuple
(see rest parameters in lesson 37). We know that we have
any return type. If we pass our function, we get the type of
the function in return:

type Fun = GetReturn<typeof createUser>

Now we have the ability to infer types that are in this
extends clause. This happens with the infer keyword. We
can choose a type variable and return this type variable.

type GetReturn<Fun> =
 Fun extends (...args: any[]) => infer R ? R : never

With infer R we say that no matter the return type of this
function, we store it in the type variable R. If we have a valid
function, we return R as type.

369Chapter 5 Conditional Types

/*
type User = {
 userId: number,
 name: string,
 role: ‘admin’ | ‘maintenance’ | ‘shipping’,
 isActive: boolean,
 createdAt: Date
}
*/
type User = GetReturn<typeof createUser>

Zero maintenance; always correct types. This helper type is
available in TypeScript as ReturnType<Fun>.

Helper Types

Helper types like ReturnType are essential if we construct
functions and libraries where we care more about the behav-
ior and interconnection of parts rather than the actual types
themselves. Storing and retrieving objects from a database,
creating objects based on a schema, that kind of thing. With
the infer keyword we get powerful flexibility to get types
even when we don’t know yet what we are dealing with.

For example, a simple type that allows us to retrieve the
resolved value of a promise:

370 TypeScript in 50 Lessons

type Unpack<T> =
 T extends Promise<infer Res> ? Res : never

type A = Unpack<Promise<number>> // A is number

Or a type that flattens an array, so we get the type of the
array’s values.

type Flatten<T> =
 T extends Array<infer Vals> ? Vals : never

type A = Flatten<Customer[]> // A is Customer

TypeScript has a couple more built-in conditional types that
use inference. One is Parameters, which collects all argu-
ments from a function in a tuple.

type Parameters<T> =
 T extends (...args: infer Param) => any
 ? Param
 : never

/* A is [
 string,
 “admin” | “maintenace” | “shipping”,
 boolean
]

371Chapter 5 Conditional Types

*/
type A = Parameters<typeof createUser>

Others are:

• InstanceType. Gets the type of the created instance of
the class’s constructor function.

• ThisParameterType. If you use callback functions that
bind this, you can get the bound type in return.

• OmitThisParameterType. Uses infer to return a func-
tion signature without the this type. This is handy if
your app doesn’t care about the bound this type and
needs to be more flexible in passing functions.

Types with the infer keyword have one thing in common:
they are low-level utility types that help you glue parts of
your code together with ease. This is behavior defined in a
type, and it allows for very generic scenarios where your code
has to be flexible enough to deal with unknown expectations.

Lesson 42: Working with null
In chapter 4 we learned that undefined and null are
parts of every set in the type space, unless we set the flag

372 TypeScript in 50 Lessons

strictNullChecks. This removes undefined and null
and treats them as their own entities. This prompts Type-
Script to throw red squigglies at us the moment we forget
to handle nullish values.

This has a great effect for the code we write on our own. If we
use types as contracts to pass data across functions, we can be
sure that we have dealt with null and undefined already. The
bitter truth is that nullish values can and will happen, at least at
the point where our software has to work with external input:

1. an element from the DOM we want to select

2. user input from an input field

3. data we fetch asynchronously from a back end

Let’s look at a very simplified fetchOrderList function that
does roughly the same thing as the one earlier in this chap-
ter, but which is exclusively asynchronous.

declare function fetchOrderList(
 input: Customer | Product
): Promise<Order[]>

This function’s contract tells us that we get a promise that
definitely returns a list of orders. The implicit message is

373Chapter 5 Conditional Types

that fetching orders has also succeeded, and that handling
errors or nullish values has already happened.

If we implement this function with fetch as we did in lesson
37, we see that we have a problem: fetch returns a promise of
any (the top type that covers everything and takes anything,
including null and undefined – and never, if we take the
possibility of an error into account).

This means that inside this function, we lose the information
if the return value is actually defined. We have to be more
specific about the set of possible return values, especially
since strictNullChecks says we don’t take nullish values
into our sets.

The real function head for fetchOrderList is much
more like this:

declare function fetchOrderList(
 input: Customer | Product
): Promise<Order[] | null>

This is good. We add nullish values back to our sets and are
explicit about it. This means that we are also forced to check if
values can be null. This makes our code much safer than before.

374 TypeScript in 50 Lessons

NonNullable

To handle null, we have two possibilities, as shown by a func-
tion called listOrders that prints all orders on the console.

The first option is that we add null to the input arguments.

declare function listOrders(Order[] | null): void

This ensures that the listOrders function is compatible
with the output from fetchOrderList. Null checks have
to be done inside listOrders. The other option is to make
sure that we never pass nullish values to listOrders. This
means that we have to do null checks before:

declare function listOrders(Order[]): void

In any case, we will have to do a check for null. And most
likely not only for lists of orders, but also for lists of prod-
ucts, lists of customers, and so on. This calls for a generic
helper function, that checks if an object is actually available.

declare function isAvailable<Obj>(
 obj: Obj
): obj is NonNullable<Obj>

375Chapter 5 Conditional Types

This generic function binds to the type variable Obj. So far,
Obj can be anything. We don’t have any type constraints
and don’t want any type constraints. isAvailable should
work with everything.

But the result should ensure we don’t have any nullish val-
ues. That’s why we use the built-in utility type NonNullable,
which removes null and undefined from our set of values.

NonNullable is defined as follows:

type NonNullable<T> =
 T extends null | undefined ? never : T

NonNullable is a distributive conditional type. If we pass
a union where we explicitly set null or undefined, we can
make sure that we remove these value types again and con-
tinue with a narrowed down set. This is the implementation:

function isAvaialble<Obj>(
 obj: Obj
): obj is NonNullable<Obj> {
 return typeof obj !== ‘undefined’ &&
 obj !== null
}

376 TypeScript in 50 Lessons

This is the helper function in action:

// orders is Order[] | null
const orders = await fetchOrderList(customer)
if(isAvailable(orders)) {
 //orders is Order[]
 listOrders(orders)
}

It’s recommended to consider nullish values early on. Keep
the core of your application null-free, and try to catch any
possible side effects as soon as possible.

Low-Level Utilities

TypeScript’s built-in conditional types help a lot if you work
on very low-level utility functions that you can reuse in
your application.

The same goes for our own utility types we declared in
the previous lesson. fetchOrderList is very specific;
now think of a much more generic function and about
some possible processes.

First, fetching from a database.

377Chapter 5 Conditional Types

type FetchDBKind =
 ‘orders’ | ‘products’ | ‘customers’

type FetchDBReturn<T> =
 T extends ‘orders’ ? Order[] :
 T extends ‘products’ ? Products[] :
 T extends ‘customers’ ? Customers[] : never

declare function fetchFromDatabase<
 Kin extends FetchKind
>(
 kind: Kin
): Promise<FetchDbReturn<Kin>| null>

Processing anything that we fetched and making sure we
get the right process function for this.

function process<T extends Promise<any>>(
 promise: T,
 cb: (res: Unpack<NonNullable<T>>) => void
): void {)
 promise.then(res =>
 if(isAvailable(res)) {
 cb(res)
 }
)
}

378 TypeScript in 50 Lessons

This allows us to safely listOrders to a function where the
results can be ambiguous.

process(
 fetchFromDatabase(‘orders’),
 listOrders
)

Recap

Conditional types are perhaps the most unique thing about
TypeScript’s type system. And they come as a direct result of
the enormous flexibility JavaScript has to offer to develop-
ers. This is what we learned.

1. Conditional types are a great tool to make direct con-
nections between input types and output types, some-
thing that gets lost in function overloads very early.

2. Still, we need a good and healthy mix of conditional
types and function overloads to make sure that func-
tions with ambiguous results can be understood in a
type-safe manner.

379Chapter 5 Conditional Types

3. We learned about the distributive nature of condi-
tional types when used with naked type parameters. A
conditional type of union types is like a union type of
conditional types.

4. This allows us to filter with the never type, reducing
unions and being more explicit about what we expect.

5. With helper types like Pick, Extract, and Exclude
we can model behavior to a set of data, and make sure
that no matter how the data changes, our processes
are prepared for change. Less type maintenance, more
type safety.

6. We learned about the infer keyword and how it can
be used to extract types from a much more complex
generic type.

7. We learned about working with null and the Non
Nullable type, and realized how a good set of low-level
primitives can make our own code more generic and
flexible without losing any type safety.

Conditional types should become invaluable tools on your
TypeScript belt. You’ll be able to create strong typings with
just a few lines of code, and can focus exclusively on writing
JavaScript code. As we’ll see in the next chapter.

380 TypeScript in 50 Lessons

Interlude: lib.d.ts

Because TypeScript is released multiple times per year, and
JavaScript has a fixed update once a year, it is almost im-
possible to keep track of all the built-in utilities and helpers
provided by TypeScript itself.

One good source of type definitions comes through looking
at the source itself! TypeScript comes with a lot of library
code, defining the JavaScript essentials we can’t work
without: the Array object, the Object object. Number, String
– you name it.

To access the library, open the lib folder in your TypeScript
installation. Or quicker: select Go to definition when you
right-click on a built-in type in your editor. This will open
the respective file, and also show you an extensive list of
files that are split by version and environment.

Those types make interesting reading. You will see what’s
defined in the DOM; you will see language features by
ECMAScript version. This lets you see how the TypeScript
team uses TypeScript to define what’s happening in
JavaScript. It also lets you see the behavior of new
ECMAScript features in a very condensed but extremely
well-documented manner.

381Chapter 5 Conditional Types

For example, in ES2018 we got a finally clause for promis-
es. It allows you to specify a task that is executed no matter
if the promise resolves to a value or is rejected. This is what
the lib es2018 promise d ts file has to say:

/**
 * Represents the completion of an asynchronous
operation
 */
interface Promise<T> {
 /**
 * Attaches a callback that is invoked when
 * the Promise is settled (fulfilled or rejected).
 * The resolved value cannot be modified from the
 * callback.
 * @param onfinally The callback to execute when
 * the Promise is settled (fulfilled or
 * rejected).
 * @returns A Promise for the completion of the
 * callback.
 */
 finally(onfinally?: (() => void) |
 undefined | null) : Promise<T>
}

Due to declaration merging, this small snippet is added to the
complete specification of Promise. That’s how we don’t have to
read the full specification but can focus on what’s new. Handy!

382 TypeScript in 50 Lessons

Lesson 43: Promisify . 385

Lesson 44: JSONify . 394

Lesson 45: Service Definitions 399

Lesson 46: DOM JSX Engine, Part 1 408

Lesson 47: DOM JSX Engine, Part 2 418

Lesson 48: Extending Object, Part 1 426

Lesson 49: Extending Object, Part 2 434

Lesson 50: Epilogue . 445

Thinking in Types

We are now at the point in our TypeScript journey where we
have a good understanding of how the type system works. We
started with simple types for our objects and functions. We
learned more about widening and narrowing types within
the type space. And with generics and conditional types, we
prepared ourselves for both unknown and modeled behavior.

These are quite some tools we have to make our JavaScript
code more type-safe, more robust, and less error-prone. In
this chapter, we’ll work to strengthen our knowledge by
seeing solutions to problems you might encounter every
day in your TypeScript life. Our goal is to write just a
couple of types to make our life easier, so we can focus on
coding more JavaScript.

And along the way we’ll learn some new concepts!

Lesson 43: Promisify
In this lesson we’ll use:

• union types for function overloads

• conditional types with infer

• variadic tuple types

Once you get used to writing promises, it becomes harder
and harder to go back to the old-style callback way of asyn-
chronous programming. If you are anything like me, the
first thing you’d do is wrap all callback-style functions in a
promise and move along. For me, this has become a pattern
I use so often that I wrote my own promisify function: a
function that takes any other callback-based function and
creates a promise-style function out of it.

This is what we expect as behavior:

// e.g. a function that loads a file into a string
declare function loadFile(
 fileName: string,
 cb: (result: string) => void
);

// We want to promisify this function
const loadFilePromise = promisify(loadFile)

// The promised function takes all arguments
// except the last one and returns a promise
// with the result
loadFilePromise('./chapter7.md')
 // which is a string according to loadFile
 .then(result => result.toUpperCase())

When thinking in types, we always start by declaring a
function and making sure we know what to expect as input
and output. The input is a function that can be promisified,

386 TypeScript in 50 Lessons

which means it has a callback at the end of the function. The
output is a promisified function, which means a function
that takes a number of arguments and returns a promise.

A function with a callback as input, and a promisified func-
tion as output. There are our input and output types:

declare function promisify<
 Fun extends FunctionWithCallback
>(fun: Fun): PromisifiedFunction<Fun>;

Now, let’s model our newly created types. Function
WithCallback is somehow peculiar, as it needs to work for
a potentially endless list of arguments before we reach the
last one, the callback.

One way to achieve that would be a list of function over-
loads, where we make sure the last argument is a callback.
But this method has to end somewhere. The following
example stops at three overloads:

type FunctionWithCallback =
 (
 (
 arg1: any,
 cb: (result: any) => any
) => any
) |

387Chapter 7 Thinking in Types

 (
 (
 arg1: any,
 arg2: any, cb: (result: any) => any
) : any
) |
 (
 (
 arg1: any,
 arg2: any,
 arg3: any,
 cb: (result: any) => any
) : any
)

A much more flexible solution is a variadic tuple type. A tuple
type in TypeScript is an array with the following features.

1. The length of the array is defined.

2. The type of each element is known (and does not have
to be the same).

For example, this is a tuple type:

type PersonProps = [string, number]

const [name, age]: PersonProps = ['Stefan', 37]

388 TypeScript in 50 Lessons

Function arguments can also be described as tuple types.
For example:

declare function hello(name: string, msg: string):
void;

is the same as:

declare function hello(...args: [string, string]):
void;

A variadic tuple type is a tuple type that has the same
properties – defined length and the type of each element is
known – but where the exact shape is yet to be defined.

This is a perfect use case for our callback-style function.
The last argument has to be a callback function; everything
before is yet to be defined. So FunctionWithCallback can
look like this:

type FunctionWithCallback<T extends any[] = any[]> =
 (...t: [...T, (...args: any) => any]) => any;

389Chapter 7 Thinking in Types

First, we define a generic. We need generics to define vari-
adic tuple types as we have to define the shape later on. This
generic type parameter extends the any[] array to catch
all tuples. We also default to any[] to make it easier to use.
Then comes a function definition.

The argument list is of type [...T, (...args: any) =>
any]). First the variadic part that we define through usage,
then a wildcard function. This ensures we only pass func-
tions that have a callback as the last argument.

Note that we explicitly use any here. This is one of the rare
use cases where any makes a lot of sense. We’re not con-
cerned yet about what we’re passing as a function as long
as the shape is intact. We also don’t want to be bothered by
passing arguments around. This is a helper function and
any will do just fine.

Next, let’s work on the return type, a promisified function.
The promisified function is a conditional type that checks
the shape we defined in FunctionWithCallback. This is
where the actual type check happens, and where we bind
types to generics.

type PromisifiedFunction<T> =
 (...args: InferArguments<T>)
 => Promise<InferResults<T>>

390 TypeScript in 50 Lessons

A PromisifiedFunction<T> takes all the arguments of the
original callback-style function minus the callback. We get
this argument list through InferArguments<T>.

type InferArguments<T> =
 T extends (
 ... t: [...infer R, (...args: any) => any]
) => any ? R : never

The conditional checks against the same type declaration
we defined in FunctionWithCallback, but instead of letting
the arguments before the callback just pass, we infer the
whole list of arguments and return them.

The PromisifiedFunction<T> returns a promise with the
results defined in the callback function. That’s why we have to
infer the results from the original function in the same manner:

type InferResults<T> =
 T extends (
 ...t: [...infer T, (res: infer R) => any]
) => any ? R : never

The function type we check for in our conditional is again
of a very similar shape to FunctionWithCallback. This

391Chapter 7 Thinking in Types

time, however, we want to know the argument list of the
callback and infer those.

This already works like a charm. loadFile gets the correct
types and also functions with other types, and other argu-
ment lists do the same.

declare function addAsync(
 x: number, y: number,
 cb: (result: number) => void
);

const addProm = promisify(addAsync);
// x is number!
addProm(1, 2).then(x => x)

The types are done! We can test how this function will
behave once it’s finished. And this is all we need to do on the
TypeScript side. A couple of lines of code and we know the
input and the output behavior of our function.

As this is a utility function, we will most likely use
promisify more than once. Time on typings well spent.

The implementation also takes a couple of lines of code:

392 TypeScript in 50 Lessons

function promisify<
 Fun extends FunctionWithCallback
>(f: Fun): PromisifiedFunction<Fun> {
 return function(...args: InferArguments<Fun>) {
 return new Promise((resolve) => {
 function callback(result: InferResults<Fun>) {
 resolve(result)
 }
 args.push(callback);
 f.call(null, ...args)
 })
 }
}

Here we can see some behavior mirrored in JavaScript that we
already saw in TypeScript. We use rest parameters – of type
InferArguments – in the newly created function. This returns
a promise with a result of type InferResults. To get this, we
need to create the callback, let it resolve the promise with the
results and add it back to the argument lists. Now we can call
the original function with a complete set of arguments.

This is the inverse operation of what we did with our types,
where we always tried to shave off the callback function. Here
we need to add it again to make it complete. The types are com-
plex, but so sound we can implement the whole promisify
function without any type cast. This is a good sign!

393Chapter 7 Thinking in Types

Lesson 44: JSONify

In this lesson we’ll see:

• mapped types

• conditional types

• the infer keyword

• recursive types

Hat tip to Anders Hejlsberg. This is one of the examples he
showcased in one of his talks. I spent quite some time scrib-
bling it down from pixelated screengrabs, and even more
time figuring out what was happening in just a couple lines
of code. After seeing the power and potential of the type sys-
tem, this was the moment where I became a TypeScript fan.

JSON.parse and JSON.stringify are nice functions to
serialize and deserialize JavaScript objects. JSON is a subset
of JavaScript objects, missing only functions and undefined.
This subset makes parsing JSON strings even faster than
parsing regular objects.29

A class that serializes and deserializes JavaScript objects,
which can be bound to different types, could look like this:

class Serializer<T> {

29 https://smashed.by/jsoncost

394 TypeScript in 50 Lessons

 serialize(inp: T): string {
 return JSON.stringify(inp)
 }

 deserialize(inp: string): JSONified<T> {
 return JSON.parse(inp)
 }
}

With JSONified to be defined. Let’s declare a type that in-
cludes all possible ways of writing values in JavaScript: num-
bers, strings, Booleans, functions. Nested and in arrays. And
a type that has a toJSON function. If an object has a toJSON
function, JSON.stringify will use the object returned from
toJSON for serialization and not the actual properties.

// toJSON returns this object for
// serialization, no matter which other
// properties this type has.
type Widget = {
 toJSON(): {
 kind: “Widget”, date: Date
 }
}

type Item = {
 // Regular primitive types
 text: string;
 count: number;
 // Options get preserved

395Chapter 7 Thinking in Types

 choice: “yes” | “no” | null;
 // Functions get dropped.
 func: () => void;
 // Nested elements need to be parsed
 // as well
 nested: {
 isSaved: boolean;
 data: [1, undefined, 2];
 }
 // A pointer to another type
 widget: Widget;
 // The same object referenced again
 children?: Item[];
}

There is a difference between JSON and JavaScript objects,
and we can model this difference with just a few lines of
conditional types. Let’s implement JSONified<T>.

JSONified Values

First, we create the JSONified type and do one particular
check: is this an object with a toJSON function? If so, we
infer the return type and use it. Otherwise we JSONify the
object itself. toJSON also returns an object, so we pass it to
our next step as well.

396 TypeScript in 50 Lessons

type JSONified<T> =
 JSONifiedValue<
 T extends { toJSON(): infer U } ? U : T
 >;

Next, let’s look at the actual values, and what happens once
we serialize them. Primitive types can be transferred easily.
Functions should be dropped. Arrays and nested objects
should be handled separately.

Let’s put this into a type:

type JSONifiedValue<T> =
 T extends string | number | boolean | null ? T :
 T extends Function ? never :
 T extends object ? JSONifiedObject<T> :
 T extends Array<infer U> ? JSONifiedArray<U> :
 never;

JSONifiedObject is a mapped type where we run through
all properties and apply JSONified again.

type JSONifiedObject<T> = {
 [P in keyof T]: JSONified<T[P]>
}

397Chapter 7 Thinking in Types

This is the first occurence in this book of a recursive type.
TypeScript allows for a certain level of recursion as long as
there’s no circular referencing involved. Calling JSONified
again further down a tree works.

It’s similar with the JSONifiedArray, which becomes an
array of JSONified values. If there’s an undefined element,
JSON.stringify will map this to null. That’s why we need
another helper type.

type UndefinedAsNull<T> =
 T extends undefined ? null : T;

type JSONifiedArray<T> =
 Array<UndefinedAsNull<JSONified<T>>>

And this is all we need. With a couple lines of code, we
described the entire behavior of a JSON.parse after a JSON.
stringify. Not only on a type level, but also wrapped nicely
in a class:

const itemSerializer = new Serializer<Item>()

const serialization =
 itemSerializer.serialize(anItem)

const obj =
 itemSerializer.deserializer(serialization)

398 TypeScript in 50 Lessons

I urge you to try it out in a playground or in your own appli-
cation. It’s remarkable to see how recursive types work and
how deep they can go in a nested object structure.

Lesson 45: Service Definitions
In this lesson we’ll see:

• mapped types

• conditional types

• String and Number constructors

• control flow analysis

Another hat tip to Anders Hejlbserg and the TypeScript
team. This is the second example that made me love Type-
Script and acknowledge the immense power that lies in the
type system.

Dynamic Definitions

We want to provide a helper function for our colleagues so
they can define a service and its service methods through a
JavaScript object that looks a little like a type; for example, a
service definition for opening, closing, and writing to files.

399Chapter 7 Thinking in Types

const serviceDefinition = {
 open: { filename: String },
 insert: { pos: Number, text: String },
 delete: { pos: Number, len: Number },
 close: {},
};

The service definition object describes a list of method
definitions. Each property of the service definition is a
method. Each method definition defines a payload and
the accompanying type.

We use capital Number and capital String here, constructor
functions in JavaScript that create values of type number
or string respectively. These are not TypeScript types! But
they look awfully similar.

The goal is to have a function, createService, where we
pass two things:

3. The service definition, in the format we
described above.

4. A request handler. This is a function that receives
messages and payloads, and is implemented by the
users of this function; for example, for the service
definition above we expect to get a message open with
a payload filename, where the file name is a string

400 TypeScript in 50 Lessons

In return, we get a service object. This service object expos-
es methods (open, insert, delete, and close, according to the
service definition) that allow for a certain payload (defined
in the service definition). Once we call a method, we set up a
request object that is handled by the request handler.

Typing Service Definitions

As always, before we implement something, let’s work on
the function head of createService. According to the speci-
fication above, the plain function definition looks like this:

declare function createService<
 S extends ServiceDefinition
>(
 serviceDef: S,
 handler: RequestHandler<S>,
): ServiceObject<S>

Note that we only need one bound generic type variable: the
service definition. Let’s define the service definition types.

// A service definition has keys we don't know
// yet and lots of method definitions
type ServiceDefinition = {
 [x: string]: MethodDefinition;
};

401Chapter 7 Thinking in Types

// This is the payload of each method:
// a key we don't know, and either a string or
// a number constructor (the capital String, Number)
type MethodDefinition = {
 [x: string]:
 StringConstructor | NumberConstructor;
};

This allows for objects with every possible string key. The
moment we bind a concrete service definition to the generic
variable, the keys become defined, and we work with the
narrowed-down type. Next, we work on the second argu-
ment, the request handler. The request handler is a func-
tion with one argument, the request object. It returns a
Boolean if the execution was successful.

type RequestHandler<
 T extends ServiceDefinition
> = (req: RequestObject<T>) => boolean;

The Request Object

The request object is defined by the service definition we
pass. It’s an object where each key of the service definition

402 TypeScript in 50 Lessons

becomes a message. The object after the key of the service
definition becomes the payload.

type RequestObject<T extends ServiceDefinition> = {
 [P in keyof T]: {
 message: P;
 payload: RequestPayload<T[P]>;
 }
}[keyof T];

With the index access type to keyof T, we create a union
out of an object that would contain every key.

The request payload is defined by the object of each key in
the service definition:

type RequestPayload<T extends MethodDefinition> =
 // Is it an empty object?
 {} extends T ?
 // Then we don't have a payload
 undefined :
 // Otherwise we have the same keys, and get the
 // type from the constructor function
 { [P in keyof T]: TypeFromConstructor<T[P]> };

type TypeFromConstructor<T> =
 T extends StringConstructor ?
 string :
 T extends NumberConstructor ? number : any;

403Chapter 7 Thinking in Types

For the service definition we described earlier, the generated
type looks like this:

{
 req: {
 message: “open”;
 payload: {
 filename: string;
 };
 } | {
 message: “insert”;
 payload: {
 pos: number;
 text: string;
 };
 } | {
 message: “delete”;
 payload: {
 pos: number;
 len: number;
 };
 } | {
 message: “close”;
 payload: undefined;
 }
}

404 TypeScript in 50 Lessons

The Service Object

Last, but not least, we type the service object, the return val-
ue. For each entry in the service definition, it creates some
service methods.

type ServiceObject<T extends ServiceDefinition> = {
 [P in keyof T]: ServiceMethod<T[P]>
};

Each service method takes a payload defined in the object
after each key in the service definition.

type ServiceMethod<T extends MethodDefinition> =
 // The empty object?
 {} extends T ?
 // No arguments!
 () => boolean :
 // Otherwise, it's the payload we already
 // defined
 (payload: RequestPayload<T>) => boolean;

That’s all the type we need!

405Chapter 7 Thinking in Types

Implementing createService

Now, let’s implement the function itself. We create an emp-
ty object and add new keys to it. Each key is a method that
takes a payload and calls the handler.

function createService<S extends ServiceDefinition>(
 serviceDef: S,
 handler: RequestHandler<S>,
): ServiceObject<S> {
 const service: Record<string, Function> = {};

 for (const name in serviceDef) {
 service[name] =
 (payload: any) => handler({
 message: name,
 payload
 });
 }

 return service as ServiceObject<S>;
}

Note that we allow ourselves a little type cast at the end to
make sure the very generic creation of a new object is type-
safe. This is how our service definition looks in action:

const service = createService(
 serviceDefinition,
 req => {

406 TypeScript in 50 Lessons

 // req is now perfectly typed and we know
 // which messages we are able to get
 switch (req.message) {
 case 'open':
 // Do something
 break;
 case 'insert':
 // Do something
 break;
 default:
 // Due to control flow anaysis, this
 // message now can only be close or
 // delete.
 // We can narrow this down until we
 // reach never
 break;
 }
 return true;
 }
);
// We get full autocomplete for all available
// methods, and know which payload to
// expect
service.open({ filename: 'text.txt' });

// Even if we don't have a payload
service.close();

We wrote around 25 lines of type definitions and a few
implementation details, and our colleagues will be able to

407Chapter 7 Thinking in Types

write custom services that are completely type-safe. Take
any other service definition and play around yourself!

Lesson 46:
DOM JSX Engine, Part 1
In this lesson we’ll learn about JSX and JSX factories.

Over the last couple of years, there has hardly been a tech-
nology more discussed than React. Well, maybe Typescript!
React is a library to compose UI and handle state directly in
JavaScript – no other technology needed. Except one: JSX.
JSX is a syntax feature that allows you to write HTML or
XML-like commands directly in JavaScript. Your compo-
nents look something like this:

export function Button() {
 return <button>Click me</button>
}

If you’d never seen something like this, and even if you had,
your first reaction might be: “JSX mixes HTML with my
JavaScript – that’s ugly!” Believe me, that was my first reac-
tion. Rest assured, JSX doesn’t mix HTML and JavaScript.
Here’s what JSX is not:

408 TypeScript in 50 Lessons

• JSX is not a templating language

• JSX is not HTML

• JSX is not XML

JSX looks like all that, but it’s nothing but syntactic sugar.

JSX Is Function Calls

JSX translates into pure, nested function calls. The React
method signature of JSX is (element, properties,
...children), with element being either a React compo-
nent or a string, properties being a JS object with keys
and values, and children being empty, or an array with
more function calls.

So:

<Button onClick={() => alert('YES')}>Click me</Button>

translates to:

React.createElement(Button, { onClick: () =>
alert('YES') }, 'Click me');

409Chapter 7 Thinking in Types

With nested elements, it looks something like this:

<Button onClick={() => alert('YES')}>Click me</
span></Button>

which translates to:

React.createElement(Button, { onClick: () =>
alert('YES') },
 React.createElement('span', {}, 'Click me'));

There is one convention: uppercase elements translate to
components, lowercase elements to strings. The latter is
used for standard HTML elements.

What are the implications, especially compared with templates?

• There’s no runtime compilation and parsing of tem-
plates. Everything goes directly to the virtual DOM or
layout engine underneath.

• There are no expressions to evaluate. Everything
around is JavaScript.

• Every component property is translatable to a JSX
object key. This allows us to type check them.

410 TypeScript in 50 Lessons

TypeScript works so well with JSX because there’s
JavaScript underneath.

So everything looks like XML, except that it’s
JavaScript functions.

One question to we seasoned web developers: have you
ever wanted to write to the DOM directly, but you gave up
because it’s so unwieldy? document.createElement has
an easy enough API, but we have to do a ton of calls to the
DOM API to get what we can achieve so easily by writing
HTML. JSX solves that. With JSX you have a nice and famil-
iar syntax of writing elements without HTML.

Writing the DOM with JSX

Enter TypeScript! TypeScript is a full-blown JSX compiler.
With TypeScript we have the possibility to change the JSX
factory. That’s how TypeScript is able to compile JSX for
React, Vue.js, Dojo… any framework using JSX in one way
or another. The virtual DOM implementations underneath
might differ, but the interface is the same:

/**
 * element: string or component
 * properties: object or null
 * ...children: null or calls to the factory
 */

411Chapter 7 Thinking in Types

function factory(element, properties, ...children) {
 //...

}

We can use the same factory method signature not only
to work with the virtual DOM, but also to work with the
real DOM, only to have a nice API on top of document.
createElement.

Let’s try! These are the features we want to implement:

1. Parse JSX to DOM nodes, including attributes.

2. Have simple functional components for more compos-
ability and flexibility.

TypeScript needs to know how to compile JSX for us. Set-
ting two properties in tsconfig json is all we need.

{
 “compilerOptions”: {
 ...
 “jsx”: "react",
 “jsxFactory”: "DOMcreateElement",
 “noImplicitAny”: false
 }
}

412 TypeScript in 50 Lessons

We leave it to the React JSX pattern (the method signature
we were talking about earlier), but tell TypeScript to use our
soon-to-be-created function DOMcreateElement for that.

Also, we set noImplicitAny to false for now. This is so we
can focus on the implementation and do proper typings at a
later stage. If we want to use JSX, we have to rename our ts
files to tsx.

First, we implement our factory function. Its specification:

1. If the element is a function, then it’s a functional com-
ponent. We call this function (passing properties and
children, of course) and return the result. We expect a
return value of type Node.

2. If the element is a string, we parse a regular node.

function DOMcreateElement(
 element, properties, ...children
) {
 if(typeof element === 'function') {
 return element({
 ...nonNull(properties, {}),
 children
 });
 }

413Chapter 7 Thinking in Types

 return DOMparseNode(
 element,
 properties,
 children
);
}

/**
 * A helper function that ensures we won't work with
null values
 */
function nonNull(val, fallback) { #
 return Boolean(val) ? val : fallback
};

Next, we parse regular nodes.

1. We create an element and apply all properties from
JSX to this DOM node. This means that all properties
we can pass are part of HTMLElement.

2. If available, we append all children.

function DOMparseNode(element, properties, children) {
 const el = Object.assign(
 document.createElement(element),
 properties
);
 DOMparseChildren(children).forEach(child => {

414 TypeScript in 50 Lessons

 el.appendChild(child);
 });
 return el;
}

Last, we create the function that handles children. Children
can either be:

1. Calls to the factory function DOMcreateElement, re-
turning an HTMLElement.

2. Text content, returning a Text.

function DOMparseChildren(children) {
 return children.map(child => {
 if(typeof child === 'string') {
 return document.createTextNode(child);
 }
 return child;
 })
}

To sum it up:

1. The factory function takes elements. Elements can be
of type string or a function.

415Chapter 7 Thinking in Types

2. A function element is a component. We call the func-
tion, because we expect to get a DOM Node out of it. If
the function component has also more function com-
ponents inside, they will eventually resolve to a DOM
Node at some point.

3. If the element is a string, we create a regular DOM
Node. For that we call document.createElement.

4. All properties are passed to the newly created Node. By
now you might understand why React has something
like className instead of class. This is because the
DOM API underneath is also className. onClick is
camelCase, though, which I find a little odd.

5. Our implementation only allows DOM Node properties
in our JSX, because of that simple property passing.

6. If our component has children (pushed together in an
array), we parse children as well and append them.

7. Children can be either a call to DOMcreateElement,
resolving in a DOM Node eventually, or a simple string.

8. If it’s a string, we create a Text. Texts can also be ap-
pended to a DOM Node.

That’s all there is! Look at the following code example:

const Button = ({ msg }) => {
 return <button onclick={() => alert(msg)}>

416 TypeScript in 50 Lessons

 Click me
 </button>
}

const el = (
 <div>
 <h1 className=”what”>Hello world</h1>
 <p>
 Lorem ipsum dolor sit, amet consectetur
 adipisicing elit. Quae sed consectetur
 placeat veritatis
 illo vitae quos aut unde doloribus, minima
eveniet et
 eius voluptatibus minus aperiam
 sequi asperiores, odio ad?
 </p>
 <Button msg='Yay' />
 <Button msg='Nay' />
 </div>
)

document.body.appendChild(el);

Our JSX implementation returns a DOM Node with all its
children. We can even use function components for it. In-
stead of templates, we work with the DOM directly, but the
API is a lot nicer!

So what’s missing? Property typings!

417Chapter 7 Thinking in Types

Lesson 47:
DOM JSX Engine, Part 2

In this lesson we’ll see:

• type maps

• mapped types

• conditional types

• declaration merging

• the JSX namespace

What we created in the previous lesson is already very pow-
erful. We can go really far and have a nice API to write to the
DOM without any library or framework!

But we TypeScript folks miss one important thing:
proper typings. Type inference does a lot for us, but
with noImplicitAny turned off, we miss a lot of
important information.

Turning it back on, we see red squigglies everywhere.
Let’s be true to ourselves and create proper typings for
our functions. As an added benefit, we also get a really
good type inference!

418 TypeScript in 50 Lessons

Typing the Factory

Let’s start with the three functions that we have. TypeScript
at this point really complains mostly about implicit anys. So
we’d better throw in some concrete types. For brevity, we’ll
just focus on the function heads.

The nonNull helper function is easy to type. We take two
generics we can bind as we use the function.

function nonNull<T, U>(val: T, fallback: U) {
 return Boolean(val) ? val : fallback;
}

The return type is inferred as T | U.

Next, we work on DOMparseChildren as it has the simplest
set of arguments. There are just a few types that can actual-
ly be children of our DOM tree:

1. HTMLElement, the base class of all HTML elements.

2. string, if we pass a regular string that should be con-
verted into a text node.

3. Text, if we created a text node outside that we
want to append.

419Chapter 7 Thinking in Types

We create a helper union, PossibleChildren, and use this
for the argument of DOMparseChildren.

type PossibleChildren =
 HTMLElement | Text | string

function DOMparseChildren(
 children: PossibleChildren[]
) {
 // ...
}

The return type is correctly inferred as HTMLElement |
Text, as we get rid of string and convert them to Text.
The next function is DOMparseNode, as it has the same
signature as DOMcreateElement. Let’s look at the possible
input arguments.

1. element can be a string or a function. We want to
use a generic to bind the concrete value of an element
to a type.

2. properties can be either the function arguments of
the component function or the set of properties of the
respective HTML element.

3. children is a set of possible children. We have the type
for this already.

420 TypeScript in 50 Lessons

To make this work properly, we need a couple of helper
types. Fun is a much looser interpretation of Function. We
need this to infer parameters.

type Fun = (...args: any[]) => any;

We need to know which HTML element is created when we
pass a certain string. TypeScript provides an interface called
HTMLElementTagNameMap. It’s a so-called type map, which
means that it is a key–value list of identifiers (tags) and
their respective types (subtypes of HTMLElement). You can
find this list in lib dom ts.

interface HTMLElementTagNameMap {
 "a": HTMLAnchorElement;
 "abbr": HTMLElement;
 "address": HTMLElement;
 "applet": HTMLAppletElement;
 // and so on ...
}

We want to create a type, CreatedElement, that returns the
element according to the string we pass. If this element
doesn’t exist, we return HTMLElement, the base type.

type AllElementsKeys = keyof HTMLElementTagNameMap

421Chapter 7 Thinking in Types

type CreatedElement<T> =
 T extends AllElementsKeys ? HTMLElementTagNameMap[T]
:
 HTMLElement

We use this helper type to properly define Props. If we pass
a function, we want to get parameters of this function. If we
pass a string, possible properties are a partial of the corre-
sponding HTML element. Without the partial, we would
have to define all properties. And there are a lot!

type Props<T> =
 T extends Fun ? Parameters<T>[0] :
 T extends string ? Partial<CreatedElement<T>> :
 never;

Note that we index the first parameter of Parameters. This is
because the JSX function only has one argument, the props.
And we need to destructure from a tuple to an actual type.

This is all we need for now. Let’s go for DOMparseNode. This
function only works if we pass strings.

function DOMparseNode<

422 TypeScript in 50 Lessons

 T extends string
>(
 element: T,
 properties: Props<T>,
 children: PossibleElements[]
)

The function correctly infers properties of HTMLElement
as return type. Last, but not least, the DOMcreateElement
function. This one can be a bit tricky as separating between
function properties and HTML element properties is not as
easy as it looks at first. Our best option is function overloads
as we only have two variants. Also, the Props type helps us
make the correct connection between the type of element
and the respective properties.

function DOMcreateElement<
 T extends string
>(
 element: T, properties: Props<T>,
 ...children: PossibleElements[]
): HTMLElement
function DOMcreateElement<
 F extends Fun
>(
 element: F, properties: Props<F>,
 ...children: PossibleElements[]
): HTMLElement

423Chapter 7 Thinking in Types

function DOMcreateElement(
 element: any, properties: any,
 ...children: PossibleElements[]
): HTMLElement {
 // ...
}

We can now use the factory function directly!

Typing JSX

We still get some type errors when using JSX instead of
factory functions. This is because TypeScript has its own
JSX parser and wants to catch JSX problems early on. Right
now, TypeScript doesn’t know which elements to expect.
Therefore, it defaults to any for every element.

To change this, we have to extend TypeScript’s own JSX name-
space and define the return type of created elements. Name-
spaces are a way in TypeScript to organize code. They were
created in a time before ECMAScript modules and are therefore
not used as much anymore.

Still, when defining internal interfaces that should be grouped,
namespaces are the way to go.

424 TypeScript in 50 Lessons

As with interfaces, namespaces allow for declaration merg-
ing. We open the namespaces JSX and define two things:

1. The return element, which is extending the
interface Element.

2. All available HTML elements, so TypeScript can give
us autocompletion in JSX. They are defined in
IntrinsicElements. We use a mapped type where
we copy HTMLElementTagNameMap to be a map of par-
tials. Then we extend IntrinsicElements from it.
We want to use an interface instead of a type as we
want to keep declaration merging open.

// Open the namespace
declare namespace JSX {
 // Our helper type, a mapped type
 type OurIntrinsicElements = {
 [P in keyof HTMLElementTagNameMap]:
 Partial<HTMLElementTagNameMap[P]>
 }

 // Keep it open for declaration merging
 interface IntrinsicElements
 extends OurIntrinsicElements {}

 // JSX returns HTML elements. Keep this also
 // open for declaration merging
 interface Element extends HTMLElement {}
}

425Chapter 7 Thinking in Types

With that, we get autocompletion for HTML elements and
function components. And our little TypeScript-based DOM
JSX engine is ready for prime time!

Lesson 48:
Extending Object, Part 1
This lesson includes:

• conditional types

• mapped types

• ambient declaration files

• declaration merging

• custom type predicates

• constructor interfaces

Hat tip to Mirjam Bäuerlein, who spent an enormous amount
of time preparing and discussing this example with me.

TypeScript’s control flow analysis lets you narrow down
from a broader type to a narrower type:

function print(msg: any) {
 if(typeof msg === 'string') {

426 TypeScript in 50 Lessons

 // We know msg is a string
 console.log(msg.toUpperCase()) // thumbs up!
} else if (typeof msg === 'number') {
 // I know msg is a number
 console.log(msg.toFixed(2)) // thumbs up!
 }
}

This is a type-safety check in JavaScript, and TypeScript
benefits from that. However, there are some cases where
TypeScript needs a little bit more assistance from us.

Checking Object Properties

Let’s assume you have a JavaScript object and you don’t know if
a certain property exists. The object might be any or unknown.
In JavaScript, you would check for properties like this:

if(typeof obj === 'object'
 && 'prop' in obj) {
 // It's safe to access obj.prop
 console.assert(typeof obj.prop !== 'undefined')
 // But TS doesn't know :-(
}

if(typeof obj === 'object'
 && obj.hasOwnProperty('prop')) {
 // It's safe to access obj.prop
 console.assert(typeof obj.prop !== 'undefined')

427Chapter 7 Thinking in Types

 // But TS doesn't know :-(
}

At the moment, TypeScript isn’t able to extend the type of obj
with a prop, even though this works with JavaScript. We can,
however, write a little helper function to get correct typings:

function hasOwnProperty<
 X extends {}, Y extends PropertyKey
>(
 obj: X, prop: Y
): obj is X & Record<Y, unknown> {
 return obj.hasOwnProperty(prop)
}

Let’s check out what’s happening:

1. Our hasOwnProperty function has two generics:

a. X extends {} makes sure we use this method
only on objects.

b. Y extends PropertyKey makes sure that the key
is either string | number | symbol. Property
Key is a built-in type.

2. There’s no need to explicitly define the generics as
they’re inferred by usage.

428 TypeScript in 50 Lessons

3. (obj: X, prop: Y): we want to check if prop is a
property key of obj.

4. The return type is a type predicate. If the method returns
true, we can retype any of our parameters. In this case,
we say our obj is the original object, with an intersec-
tion type of Record<Y, unknown>. The last piece adds
the newly found property to obj and sets it to unknown.

In use, hasOwnProperty works like this:

// person is an object
if(typeof person === 'object'
 // person = { } & Record<'name', unknown>
 // = { } & { name: 'unknown'}
 && hasOwnProperty(person, 'name')
 // Yes! name now exists in person
 && typeof person.name === 'string'
) {
 // Do something with person.name,
 // which is a string
 }

Extending lib.d.ts

Writing a helper function is a bit on the nose. Why write
a helper function that wraps some baked-in functionality
only to get better types? We should be able to create those
typings directly where they occur.

429Chapter 7 Thinking in Types

Thankfully, with declaration merging of interfaces, we
are able to do that. Create your own ambient type decla-
ration file and make sure that the TypeScript compiler
knows where to find them (typeRoots and types in
tsconfig json are a good start).

In this file, which we can call mylib d ts, we can
add our own ambient declarations, and can extend
existing declarations.

We can do so with the Object interface. This is a built-in
interface for all Objects.

interface Object {
 hasOwnProperty<
 X extends {},
 Y extends PropertyKey
 >(this: X, prop: Y): this is X & Record<Y, unknown>
}

If you think TypeScript ought to have something like that
out of the box, then you are right. There might be a good
reason type definitions aren’t yet shipped like that, but it’s
good that we are able to extend it to meet our own needs.

430 TypeScript in 50 Lessons

Extending the Object Constructor

We get into a similar scenario when working with other
parts of Object. One pattern that you might encounter a lot
is to iterate over an array of object keys, then access these
properties to do something with the values.

const obj = {
 name: 'Stefan',
 age: 38
}

Object.keys(obj).map(key => {
 console.log(obj[key])
})

In strict mode, TypeScript wants to know explicitly what
type key has, to be sure that this index access works. So we
get some red squigglies thrown at us. Well, we should know
the type of key it is! It’s keyof obj! This is a good chance to
extend the typings for Object.

This is how Object.keys should behave:

1. If we pass a number, we return an empty array.

431Chapter 7 Thinking in Types

2. If we pass an array or a string, we get a string array in
return. This string array contains the stringified indi-
ces of the input value.

3. If we pass an object, we get the actual keys of this
object in return.

The interface to extend is called ObjectConstructor.
For classes or class-like structures, TypeScript needs two
different interfaces. One is the constructor interface, which
includes the constructor function and all the static informa-
tion. The other is the instance interface, which includes all the
dynamic information per instance.

This divide comes from old JavaScript, when classes were
defined as constructor function and prototype, for example:

// Static parts --> constructor interface
function Person(name, age) {
 this.name = name
 this.age = age;
}

Person.create(name, age) {
 return new Person(name, age)
}

432 TypeScript in 50 Lessons

// Dynamic parts --> instance interface
Person.prototype.toString() {
 return `My name is ${this.name} and I'm
 ${age} years old`
}

In our case, Object is the instance interface and Object
Constructor is the constructor interface. Let’s make
Object.keys stronger:

// A utility type
type ReturnKeys<O> =
 O extends number ? [] :
 O extends Array<any> | string ? string[] :
 O extends object ? Array<keyof O> : never

// Extending the interface
interface ObjectConstructor {
 keys<O>(obj: O) : ReturnKeys<O>
}

Let’s put this into our ambient type declaration file and
Object.keys will get better type inference immediately.

433Chapter 7 Thinking in Types

Lesson 49:
Extending Object, Part 2

In this lesson, we’ll learn about:

• property descriptors

• conditional types

• assertion signatures

In JavaScript we can define object properties on the fly with
Object.defineProperty. This is useful if we want your
properties to be read-only or similar. Think back to the very
first example in this book: a storage object that has a maxi-
mum value that shouldn’t be overwritten:

const storage = {
 currentValue: 0
}

Object.defineProperty(storage, 'maxValue', {
 value: 9001,
 writable: false
})

console.log(storage.maxValue) // 9001

storage.maxValue = 2

console.log(storage.maxValue) // Still 9001

434 TypeScript in 50 Lessons

defineProperty and property descriptors are very complex.
They allow us to do everything with properties that is usually
reserved for built-in objects. So they’re common in larger code-
bases. TypeScript has a little problem with defineProperty:

const storage = {
 currentValue: 0
}

Object.defineProperty(storage, 'maxValue', {
 value: 9001,
 writable: false
})

// Property 'maxValue' does not exist on type...
console.log(storage.maxValue)

If we don’t explicitly type cast, we don’t get maxValue
attached to the type of storage. However, for simple use
cases, we can help!

Assertion Signatures

In TypeScript 3.7 the team introduced assertion signatures.
Think of an assertIsNum function where we can make sure
some value is of type number, and otherwise it throws an
error. This is similar to the assert function in Node.js:

435Chapter 7 Thinking in Types

function assertIsNum(val: any) {
 if (typeof val !== “number”) {
 throw new AssertionError(“Not a number!”);
 }
}

function multiply(x, y) {
 assertIsNum(x);
 assertIsNum(y);
 // At this point I'm sure x and y are numbers.
 // If one assert condition is not true, this
 // position is never reached.
 return x * y;
}

To comply with behavior like this, we can add an assertion
signature that tells TypeScript that we know more about the
type after this function:

function assertIsNum(val: any): asserts val is number
{
 if (typeof val !== “number”) {
 throw new AssertionError(“Not a number!”);
 }
}

This works a lot like type predicates, but without the control
flow of a condition-based structure like if or switch.

436 TypeScript in 50 Lessons

function multiply(x, y) {
 assertIsNum(x);
 assertIsNum(y);
 // Now also TypeScript knows that both x and y are
numbers
 return x * y;
}

If we look at it closely, we can see those assertion signatures
can change the type of a parameter or variable on the fly.
This is just what Object.defineProperty does as well.

Custom defineProperty

Disclaimer: The following helper does not aim to be 100%
accurate or complete. It might have errors, and it might not
tackle every edge case of the defineProperty specification.
It might, however, handle a lot of use cases well enough. So
use it at your own risk!

Just as with hasOwnProperty in the last lesson, we create a
helper function that mimics the original function signature:

function defineProperty<
 Obj extends object,

437Chapter 7 Thinking in Types

 Key extends PropertyKey,
 PDesc extends PropertyDescriptor>
 (obj: Obj, prop: Key, val: PDesc) {
 Object.defineProperty(obj, prop, val);
}

We work with three generics:

1. The object we want to modify, of type Obj, which is a
subtype of object.

2. Type Key, which is a subtype of PropertyKey (built-in),
so string | number | symbol.

3. PDesc, a subtype of PropertyDescriptor (built-in).
This allows us to define the property with all its fea-
tures (writability, enumerability, reconfigurability).

We use generics because TypeScript can narrow them down
to a very specific unit type. PropertyKey, for example, is
all numbers, strings, and symbols. But if we use Key
extends PropertyKey, we can pinpoint prop to be of (for
instance) type "maxValue". This is helpful if we want to
change the original type by adding more properties.

The Object.defineProperty function either changes the
object or throws an error should something go wrong.

438 TypeScript in 50 Lessons

Exactly what an assertion function does. Our custom helper
defineProperty thus does the same.

Let’s add an assertion signature. Once defineProperty
successfully executes, our object has another property. We’ll
create some helper types for that. The signature first:

function defineProperty<
 Obj extends object,
 Key extends PropertyKey,
 PDesc extends PropertyDescriptor>
- (obj: Obj, prop: Key, val: PDesc) {
+ (obj: Obj, prop: Key, val: PDesc):
+ asserts obj is Obj & DefineProperty<Key, PDesc> {
 Object.defineProperty(obj, prop, val);
}

obj then is of type Obj (narrowed down through a generic)
and our newly defined property.

This is the DefineProperty helper type:

type DefineProperty<
 Prop extends PropertyKey,
 Desc extends PropertyDescriptor> =
 Desc extends {
 writable: any, set(val: any): any
 } ? never :
 Desc extends {
 writable: any, get(): any

439Chapter 7 Thinking in Types

 } ? never :
 Desc extends {
 writable: false
 } ? Readonly<InferValue<Prop, Desc>> :
 Desc extends {
 writable: true
 } ? InferValue<Prop, Desc> :
 Readonly<InferValue<Prop, Desc>>

First, we deal with the writeable property of a Property
Descriptor. It’s a set of conditions to define some edge
cases and conditions of how the original property
descriptors work:

1. If we set writable and any property accessor (get,
set), we fail. never tells us that an error was thrown.

2. If we set writable to false, the property is read-
only. We defer to the InferValue helper type.

3. If we set writable to true, the property is not read-
only. We defer as well.

4. The last, default case is the same as writeable: false,
so Readonly<InferValue<Prop, Desc>>. (Readonly
<T> is built-in.)

This is the InferValue helper type, dealing with the set
value property:

440 TypeScript in 50 Lessons

type InferValue<Prop extends PropertyKey, Desc> =
 Desc extends { get(): any, value: any } ? never :
 Desc extends { value: infer T } ? Record<Prop, T> :
 Desc extends { get(): infer T } ? Record<Prop, T> :
 never;

Again a set of conditions:

1. If we have a getter and a value set, Object.define
Property throws an error, so never.

2. If we have set a value, let’s infer the type of this value
and create an object with our defined property key and
the value type.

3. Or we infer the type from the return type of a getter.

4. Anything else we forgot. TypeScript won’t let us work
with the object as it’s becoming never.

Moving It to the Object Constructor

This already works wonderfully in your code, but if you
want to make use of that throughout the whole application,
we should put this type declaration in ObjectConstructor.
Let’s move our helpers to mylib d ts and change the
ObjectConstructor interface:

441Chapter 7 Thinking in Types

type InferValue<Prop extends PropertyKey, Desc> =
 Desc extends { get(): any, value: any } ? never :
 Desc extends { value: infer T } ? Record<Prop, T> :
 Desc extends { get(): infer T } ? Record<Prop, T> :
 never;

type DefineProperty<
 Prop extends PropertyKey,
 Desc extends PropertyDescriptor> =
 Desc extends {
 writable: any, set(val: any): any
 } ? never :
 Desc extends {
 writable: any, get(): any
 } ? never :
 Desc extends {
 writable: false
 } ? Readonly<InferValue<Prop, Desc>> :
 Desc extends {
 writable: true
 } ? InferValue<Prop, Desc> :
 Readonly<InferValue<Prop, Desc>>

interface ObjectConstructor {
 defineProperty<
 Obj extends object,
 Key extends PropertyKey,
 PDesc extends PropertyDescriptor
 >(obj: Obj, prop: Key, val: PDesc):
 asserts obj is Obj & DefineProperty<Key, PDesc>;
}

442 TypeScript in 50 Lessons

Thanks to declaration merging and function overloading,
we attach this much more concrete version of define
Property to Object. In use, TypeScript aims for the most
correct version when selecting an overload. So we always
end up with the one overload where we bind generics
through inference. Let’s see what TypeScript does:

const storage = {
 currentValue: 0
}

Object.defineProperty(storage, 'maxValue', {
 writable: false, value: 9001
})

storage.maxValue // It's a number
storage.maxValue = 2 // Error! It's read-only

const storageName = 'My Storage'
defineProperty(storage, 'name', {
 get() {
 return storageName
 }
})

storage.name // It's a string!

// It's not possible to assign a value and a getter
Object.defineProperty(storage, 'broken', {
 get() {
 return storageName

443Chapter 7 Thinking in Types

 },
 value: 4000
})

// Storage is never because we have a malicious
// property descriptor
storage

We already have some great additions to regular typings
that we can reuse in all our applications. Take care of this
file and make it part of your standard setup.

444 TypeScript in 50 Lessons

Epilogue: Lesson 50

Welcome to the last lesson in this book. When we set out
on this journey, we had a specific focus: how can we use
TypeScript as an extension to JavaScript, the programming
language that drives the web?

Following this route has led us deep into the realms of
type systems, learning how we can model data with union
and intersection types, model behavior with generics and
conditional types, and trying to reduce type maintenance as
much as possible.

By the end, we had an arsenal of tools at our disposal, help-
ing make sure we use the least amount of code possible to
define the most complex JavaScript scenarios.

Still, this is just part of what TypeScript has to offer. Argu-
ably the most important part, but you never know where
you’ll end up with your newfound TypeScript skills.

In this final lesson, I want to prepare you for the unknown.
Not the type unknown, but what lies ahead: the future, which
can’t be covered in a book that is supposed to be timeless.

So where do you go from here?

445Chapter 7 Thinking in Types

Listen

I urge you to lend an ear to the TypeScript team. They work
in the open. You can see their team communication on
GitHub,30 find roadmaps, upcoming features, and their over-
all plans. We know that even if TypeScript already covers a
wide range of JavaScript scenarios, there are still situations
where we need a type cast, or worse: any! This is supposed
to change. And the TypeScript team is very vocal about their
plans. The roadmap31 especially is a good read.

You should also keep an ear out for TC39, the committee
that standardizes ECMAScript and that works closely
with the TypeScript team. There’s even a little overlap in
membership. New language features are specified by TC39
and implemented in TypeScript once they reach a certain
maturity level and are ready to be implemented in JavaS-
cript engines. Their GitHub repo32 is an excellent source of
discussions and new features.

Learn

We covered a large and significant part of TypeScript, but
there is more to it. There are features that go deep into

30 https://smashed.by/typescriptteam
31 https://smashed.by/typescriptroadmap
32 https://smashed.by/ecma262

446 TypeScript in 50 Lessons

object-oriented programming languages. Other language
constructs just make certain forms easier to write. And
there are experimental features that are required by certain
frameworks. The official TypeScript handbook and docu-
mentation33 are excellent sources for all this.

You will find starter kits for TypeScript with your favorite
framework. You’ll also get a good overview of language
features that you haven’t yet seen and might find useful. As
you know from the interludes in this book, people can be very
opinionated about those features. But try them for yourself.

Read On

The TypeScript community is very active in providing new
tools, writing articles, and showing developers what can be
done with the power of this language. There is a new
Node.js-like runtime called Deno,34 developed by Node.js’s
original creators, which supports TypeScript out of the box.

Together with the people from the package manager Pika35
they make sure that you get type declaration files over
HTTP once you import a Deno package from a URL.

33 https://typescriptlang.org
34 https://deno.land/
35 https://www.pika.dev/

447Chapter 7 Thinking in Types

Then there’s a myriad of blogs on TypeScript.

Marius Schulz36 has been writing for years about TypeScript
and curates a wonderful newsletter called TypeScript
Weekly.37 Sometimes you find articles in there by me, which
you can read on my website.38

As the hard rock poets Deep Purple so masterfully said:
listen, learn, read on. There’s a lot to uncover, a lot to learn!

Thank you for reading my book!

I hope you had as much joy reading it as I had writing it.
TypeScript is always evolving, and I always try to find new
and exciting solutions to typing challenges. Get in touch
with me on Twitter at @ddprrt,39 and let’s figure out how we
can type your code best!

36 https://mariusschulz.com/
37 https://www.typescript-weekly.com/
38 https://fettblog.eu
39 https://smashed.by/ddprrt

448 TypeScript in 50 Lessons

Lesson 1: Red Squiggly Lines 20
Lesson 2: Hunting Bugs 27
Lesson 3: Types . 35
Lesson 4: Adding Types with JSDoc 40
Lesson 5: Type Declaration Files 47
Lesson 6: Ambient Declaration Files 52
Lesson 7: Tooling . 58
Lesson 8: Compiling Typescript 69
Lesson 9: any, Are You OK? 76
Lesson 10: Control Flow 82
Lesson 11: Typing Objects 88
Lesson 12: Object Type Tool Belt 98
Lesson 13: Typing Classes 105
Lesson 14: Interfaces . 114
Lesson 15: A Search Function 134
Lesson 16: Callbacks . 141
Lesson 17: Substitutability 150
Lesson 18: This and That 160
Lesson 19: The Function Type Tool Belt . . 168
Lesson 20: Function Overloading 176
Lesson 21: Generator Functions 185
Lesson 22: Modeling Data 204
Lesson 23: Moving in the Type Space 212
Lesson 24: Working with Value Types . . . 221
Lesson 25: Dynamic Unions 232

Lesson 26: Object Types and

 Type Predicates . 239
Lesson 27: Down at the Bottom: never 246
Lesson 28: Undefined and Null 253
Lesson 29: I Don’t Know What I

 Want, but I Know How to Get It 269
Lesson 30: Generic Constraints 277
Lesson 31: Working with Keys 284
Lesson 32: Generic Mapped Types 291
Lesson 33: Mapped Type Modifiers. 299
Lesson 34: Binding Generics 308
Lesson 35: Generic Type Defaults 316
Lesson 36: If This, Then That 332
Lesson 37: Combining Function

 Overloads and Conditional Types 339
Lesson 38: Distributive Conditionals . . . 346
Lesson 39: Filtering with never 352
Lesson 40: Composing Helper Types 359
Lesson 41: The infer Keyword 365
Lesson 42: Working with null 372
Lesson 43: Promisify . 385
Lesson 44: JSONify . 394
Lesson 45: Service Definitions 399
Lesson 46: DOM JSX Engine, Pt. 1 408
Lesson 47: DOM JSX Engine, Pt. 2 418
Lesson 48: Extending Object, Part 1 426
Lesson 49: Extending Object, Part 2 434
Lesson 50: Epilogue . 445

any 76–89,
82, 84–89

problems with . . 79

Any, Are You OK?
(Lesson 9) 76

assertion signatures 434–437

asynchronous
back-end calls . . 137
code 276
data 339
execution 145
functions 174
operations 136, 382
patterns 339

.d.ts file 49, 54, 74
lib.d.ts 381, 429

Access Types
mapped 294
indexed 235, 294

adding defaults 320

Adding types with JSDoc
(Lesson 4) 40

Ambient Declaration Files
(Lesson 6) 52

annotations 41, 275
type xv, 46,

51, 71, 73–76, 105, 162,
309–311

Index

451Index

checkjs 60–61

classes 86, 106,
116, 126, 316, 432

abstract 126
extending 111
generic 317
structural typing 109
typing 105

Combining Function
Overloads and
Conditional Types
(Lesson 37) 339

compiler 35,
59–62, 65–66

configuring 70

Compiling TypeScript
(Lesson 8) 69

complex types 214, 218

Composing Helper Types
(Lesson 40) 359

back-end 69, 134,
Asynchronous

Back-End Calls
137–141

Binding Generics
(Lesson 34) 308

boolean types 35–42,
52, 54–55, 88, 107, 109,
119–120, 126

borrowed language 123

boundaries 280

Bäuerlein, Mirjam . 426

C++ 326

callback 154, 158,
160, 180–184

extracting 166

Callbacks (Lesson 16)
 141

452 TypeScript in 50 Lessons

Deep Purple 448

defineProperty 21
custom 437
object 434

Deno 447

Distributive Conditionals
(Lesson 38) 346

DOM 86, 316,
373, 381

DOM JSX Engine, Part 1
(Lesson 46) 408

DOM JSX Engine, Part 2
(Lesson 47) 418

Down at theBottom: Never
(Lesson 27) 246

Dynamic Unions
(Lesson 25) 232

conditional types . . 333–382

Control Flow
(Lesson 10) 82

createService 400, 406

custom ambient
declarations . 54

custom type
declarations . 48

custom types 42, 49,
51, 56

declaration merging 118

declarations 118
custom ambient 54
custom type . . . 48
installing. 55

deep modifications . 305

453Index

formats 270–292,
294–301

function 21, 33
anonymous 146
asynchronous . . 174
binding 163
calls 409
constructor 106, 372,

432
heads 134
overloads 176, 178,

333, 339, 423
search 134
types with

overloads . . . 183
typing 131

Function Overloading
(Lesson 20) 176

Function Type Tool Belt
(Lesson 19) 168

ECMAScript 61, 76,
104–106, 113, 121, 123,
198–199, 381, 424, 446

enums 127

Epilogue
(Lesson 50) 445

exclude 360

Extending Object, Part 1
(Lesson 48) 426

Extending Object, Part 2
(Lesson 49) 434

extracting the callback 166

fettblog.eu 121, 448

Filtering with Never
(Lesson 39) 352

454 TypeScript in 50 Lessons

HTML elements . . . 317, 419,
425

function binding
and 163

Hunting Bugs
(Lesson 2) 27

I Don’t Know What I Want,
but I Know How to Get It
(Lesson 29) 269

If This, Then That
(Lesson 36) 332

index types 281

infer the return type 367

intention 46

Interfaces
(Lesson 14) 114

Generator Functions
(Lesson 21) 185

Generic Constraints
(Lesson 30) 277

Generic Mapped Types
(Lesson 32) 291

generic 343, 350
programming . . 273
type binding . . . 309, 312

Generic Type Defaults
(Lesson 35) 316

Github 66, 446

Hejlsberg, Anders . . 196–199,
394

helper types 291, 359,
365, 370

455Index

low-level utilities . . . 377

Mapped Type Modifiers
(Lesson 33) 299

mapped types 291, 394,
399, 418, 426

Modeling Data
(Lesson 22) 204

module 60–62,
120, 175, 424

Moving In the Type Space
(Lesson 23) . . 212

moving to generics . 317

naked types 350

never 352

Node.js 47, 57, 61,
177, 340

intersection types . . 207

JSONify
(Lesson 44) 394

keyof 240

keys 236–239,
284–291, 296

object 239, 293
property 291, 297

keyword 55, 114,
125, 241–246, 280

async 174, 189
const 128
declare 134, 137
extends 280
yield 185

lib.d.ts 381, 429,
441

lookup types 233

456 TypeScript in 50 Lessons

Objectkeys and Types
Predicates
(Lesson 26) 239

omit 363

optional parameters
103, 136, 180

paramaters 36, 72, 75
optional 103, 136,

180
number of. 150
rest 172

partials 300

pick 291, 363

Pika 447

Playground 65

polling search 187

NonNullable 375

null 38, 253,
372

strict null
checks 257, 373

nullable 317, 375

Object(s) 36, 42
as parameters . . 95
constructor 431
function types

in 142
oriented program-

ming 124
properties 427
sets 215
type tool belt . . . 98
types 239
typing 88

Object Type Tool Belt
(Lesson 12) 98

457Index

readonly 27, 304,
316, 440

deepreadonly . . . 306

record 291, 293,
326

Red Squiggly Lines
(Lesson 1) 20

roadmap 123, 446

Schulz, Marius 448

Search Function, A
(Lesson 15) 134

semantic checks . . . 32

Service Definitions
(Lesson 45) 399

service object 401, 405

primitive types. 36, 38,
88, 121, 214, 218, 221,
262, 280, 397

promise 137, 139,
144, 147, 155, 173, 276

Promisify
(Lesson 43). 385

properties 28, 92,
226, 306, 326, 354, 395

optional 102

property access
modifier 124

property checks
excess 91

prototype 109, 432

458 TypeScript in 50 Lessons

Tooling
(Lesson 7) 58

tsc 58, 58

tsconfig.json 60, 65,
76, 133, 257, 412, 430

tuple types 262, 341,
389

type
annotations 46, 71,

75, 275, 311
composite 36, 42,

89
exporting and

importing . . . 104
guards 84, 211
inference 29, 227,

264, 309, 321, 418
narrowing 82
parameters 273, 280,

285, 326, 350, 380

set theory 212, 260

shapes 38, 211

StackOverflow developer
survey xi

State of the Jamstack
Survey xi

strongly typed 37

Substitutability
(Lesson 17) 150

TC39 123, 446

The Infer Keyword
(Lesson 41) 365

Therox, Orta ix–x

This and That
(Lesson 18) 160

459Index

typing 35
classes 105
function heads . 134
left-hand vs.

right-hand . . 78
objects 88
structural 91, 109

Typing Classes
(Lesson 13) 105

Typing Objects
(Lesson 11) 88

undefined 29–31,
138, 142, 154, 156, 253

Undefined and Null
(Lesson 28). 253

union types 209, 215,
294, 352, 385

discriminated . . 224

type (continued)
predicates 239, 243,

261, 426
tuple 262, 341,

389

Type Declaration Files
(Lesson 5) 47

typeof 75,
82–88, 98, 142, 181, 184,
190, 210, 368–370, 426

typeroots 60, 62,
70, 430

Types
(Lesson 3) 35

TypeScript Handbook
 447

TypeScript Weekly . 448

460 TypeScript in 50 Lessons

Voss, Laurie 21

weakly typed 36

Working with Keys
(Lesson 31) 284

Working with null
(Lesson 42) 372

Working With Value Types
(Lesson 24) 221

yielding in 191

unions 223, 227,
283

branches of 355
distribution over 347
dynamic 232

unknown 87, 213,
427, 429

URL 270, 284

value types 218, 221
fixating 227

video 164

Visual Studio Code
(VS Code) . . . 24–25,
27, 57, 62

void 110, 146,
153, 160

461Index

More Smashing Books

We pour our heart and soul into
crafting books that help make the
web better. We hope you’ll find
these other books we’ve published
useful as well—and thank you so
much for your kind support from
the very bottom of our hearts.

• Click! How to Encourage Clicks Without Shady Tricks by
Paul Boag

• The Ethical Design Handbook by Trine Falbe,
Martin Michael Frederiksen and Kim Andersen

• Inclusive Components by Heydon Pickering

• Art Direction for the Web by Andy Clarke

• Form Design Patterns by Adam Silver

• Design Systems by Alla Kholmatova

• Smashing Book 6: New Frontiers in Web Design
by Laura Elizabeth, Marcy Sutton, Rachel Andrew,
Mike Riethmuller, Lyza Gardner, Yoav Weiss,
Adrian Zumbrunnen, Greg Nudelman,
Ada Rose Cannon, & Vitaly Friedman

The world is a miracle. So are you.

Thanks for being smashing.

This is a gentle and timeless journey through the

tenets of TypeScript. If you’re a JavaScript programmer

looking for a clear primer text to help you become

immediately productive with TypeScript, this is the

book you’re looking for. It’s filled with practical

examples and clear technical explanations.”

—Natalie MarlenyNatalie Marleny, Application Engineer

Stefan walks you through everything from basic types

to advanced concepts like the infer keyword in a clear

and easy to understand way. The book is packed with

many real-world examples and great tips, transforming

you into a TypeScript expert by the end of it.

Highly recommended read!”

—Marvin HagemeisterMarvin Hagemeister, Creator of Preact-Devtools

Stefan Baumgartner is a software architect

based in Austria. He has published online

since the late 1990s, writing for Manning,

Smashing Magazine, and A List Apart.

He organizes ScriptConf, TSConf:EU, and

DevOne in Linz, and co-hosts the German-

language Working Draft podcast.

9 783945 749906

“

“

